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Objectives: In this survey, we reviewed the current state of the art in biomedical QA (Question

Answering), within a broader framework of semantic knowledge-based QA approaches, and

projected directions for the future research development in this critical area of intersection

between Artificial Intelligence, Information Retrieval, and Biomedical Informatics.

Materials and methods: We devised a conceptual framework within which to categorize cur-

rent QA approaches. In particular, we used “semantic knowledge-based QA” as a category

under which to subsume QA techniques and approaches, both corpus-based and knowledge

base (KB)-based, that utilize semantic knowledge-informed techniques in the QA process,

and we further classified those approaches into three subcategories: (1) semantics-based, (2)

inference-based, and (3) logic-based. Based on the framework, we first conducted a survey

of open-domain or non-biomedical-domain QA approaches that belong to each of the three

subcategories. We then conducted an in-depth review of biomedical QA, by first noting the

characteristics of, and resources available for, biomedical QA and then reviewing medical

QA approaches and biological QA approaches, in turn. The research articles reviewed in this

paper were found and selected through online searches.

Results: Our review suggested the following tasks ahead for the future research develop-

ment in this area: (1) Construction of domain-specific typology and taxonomy of questions

(biological QA), (2) Development of more sophisticated techniques for natural language (NL)

question analysis and classification, (3) Development of effective methods for answer gener-

ation from potentially conflicting evidences, (4) More extensive and integrated utilization of

semantic knowledge throughout the QA process, and (5) Incorporation of logic and reasoning

mechanisms for answer inference.
Conclusion: Corresponding to the growth of biomedical information, there is a growing need

for QA systems that can help users better utilize the ever-accumulating information. Contin-

ued research toward development of more sophisticated techniques for processing NL text,

for utilizing semantic knowledge, and for incorporating logic and reasoning mechanisms,

ful Q

Extraction (IE) and Natural Language Processing (NLP) tech-
will lead to more use

. Introduction
uestion Answering (QA), unlike traditional Information
etrieval (IR), aims to provide inquirers with direct, pre-
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cise answers to their questions, by employing Information
niques, instead of providing a large number of documents
that are potentially relevant for the questions posed by the
inquirers. As such, QA is regarded as involving the most

erved.
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Fig. 2 – Question processing phase of QA.
2 c o m p u t e r m e t h o d s a n d p r o g r a

critical capability required of the next generation of search
engines.

While the early research on automated QA in the field
of AI dates far back to the 1960s, a more recent surge of
research activities involving QA within the IR/IE community
has been mainly prompted by the introduction of the QA
Track in TREC [1] evaluations in 1999 [2]. (See Hirschman and
Gaizauskas [3] for an overview of QA as a research topic.)
Since then techniques have been developed for generating
answers for the three types of questions supported by TREC
evaluations, namely, factoid questions, list questions, and def-
initional questions.

Most research development in the area of QA, as fostered
by TREC and other similar evaluation venues such as CLEF
[4] and NTCIR [5], has so far been focused on open-domain
text-based QA. Recently, however, the field has witnessed a
growing interest among researchers in restricted-domain QA.
(See Mollá and Vicedo [6] for an overview of restricted-domain
QA.) Also, while the earlier TREC QA systems mostly relied on a
surface-level lexico-syntactic analysis in generating answers,
there has been a growing research interest in the development
of QA techniques that incorporate semantic knowledge.

Due to the continuous, exponential growth of information
produced in the biomedical domain, and due to the crucial
impact of such information upon research and upon real-
world applications, there is a particularly great and growing
demand for QA systems that can effectively and efficiently
aid biomedical researchers and health care professionals in
their information search. In order to provide information seek-
ers with accurate answers, such systems need to go beyond
surface-level lexico-syntactic analysis to semantic analysis
and processing of textual, terminological, and ontological
resources. Moreover, QA systems equipped with reasoning
capabilities can derive more adequate answers by using infer-
ence mechanisms.

And yet, research on QA specifically directed to the
information needs in the biomedical domain remains a little-
explored territory. While several approaches have exploited
semantic knowledge in the QA process, few approaches have
explored the utility of logic representations and of inference
mechanisms.

In this paper, we survey the current state of the art in
biomedical QA and suggest future directions for the research
development in the area. By doing so, we hope to contribute to
the ongoing research in this emerging field of the intersection
between AI, IR, and Biomedical Informatics.

The remainder of this paper is organized as follows: In
Section 2, we briefly describe the generic architecture of
QA systems for the sake of readers who are less familiar

with the field. In Section 3, we present a broader classifica-
tion framework involving semantic knowledge-based QA, and
briefly discuss some of the open-domain or non-biomedical
restricted-domain QA approaches that belong within the

Fig. 1 – Three main processing phases of QA.
Fig. 3 – Document processing phase of QA.

framework. In Section 4, we review the current research on
biomedical QA, based on the framework introduced in the pre-
vious section. In Section 5, we suggest directions for the future
research development in the area, based on our review. Section
6 concludes the paper.

2. Generic architecture of QA systems

In general (cf. Hirschman and Gaizauskas [3]), the QA pro-
cessing in a QA system consists of three main processing
phases, namely, question processing, document processing,
and answer processing phases, as shown in Fig. 1.

The input to a QA system is a question (usually) given in
natural language (NL) expressions. The question processing
phase (Fig. 2) consists of question analysis & classification and
query formulation. Based on the linguistic processing of the
question, question analysis & classification determines the
type of the question and the corresponding type of expected
answer. There may be more subprocesses involved at this
stage, such as named entity recognition (NER). Query for-
mulation consists of generating a query to be input to a
document retrieval engine, by transforming the question into
some canonical form.

In the document processing phase (Fig. 3), the query gen-
erated in the question processing phase is fed into a search
engine in order to retrieve relevant documents. The retrieved
document set may be narrowed down to a smaller set of
most relevant documents. Out of the retrieved and selected
documents, candidate answer passages are extracted, which
constitute the input for the answer processing phase. As in the
question processing phase, the document processing phase

will generally involve linguistic processing subprocesses.

Finally, in the answer processing phase (Fig. 4), the candi-
date answers generated in the document processing phase are
matched against the expected answer type generated in the

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Table 1 – Semantics-based QA approaches.

Approach Semantic feature used

Vicedo and Ferrández [10] Semantic representation of answer
context

Alfonseca et al. [11] Semantic distance between question
and answer

Hovy et al. [12] Semantic patterns of question and
answer

Fleischman et al. [13] Semantic relations between lexical
terms

Ferrés et al. [14] Semantic environment of question;
semantic constraints on answer

Punyakanok et al. [16] Semantic distance measured by the
edit distance between Q/A
dependency trees
Fig. 4 – Answer processing phase of QA.

uestion processing phase, and are ranked according to the
atching scores. Again, more sophisticated linguistic process-

ng may be involved. The output from the QA system consists
f the top-ranked answer(s) selected as the final answer(s).

. Semantic knowledge-based QA

n this section we lay out a framework within which we will
eview and categorize current biomedical QA approaches in
he next section.

A recent trend among QA researchers has been to incorpo-
ate semantic knowledge throughout the QA process in order
o derive more accurate answers. As shown in Fig. 5, the knowl-
dge of semantic information extracted or obtained from the
extual sources (including the question text as well as the
ocuments in the collection) and terminological/ontological
esources may be fed into the QA system at each of the three

ain processing phases so as to improve the QA performance.
While a recent report by Lopez et al. [7] has surveyed the

tate of the art in semantic QA, our perspective in this paper
s different from that of Lopez et al. in that we do not focus on
A over semantic metadata in structured knowledge bases

KBs) and ontologies. Rather, we use the phrase “semantic
nowledge-based QA” as an overarching rubric for the category
f QA techniques and approaches, both corpus-based and KB-
ased, which utilize semantic knowledge-informed IR/IE/NLP
echniques in the QA process. We classify these approaches
nto three subcategories: (1) semantics-based, (2) inference-
ased, and (3) logic-based. In the following, we review some of
he open-domain or non-biomedical-domain QA approaches
hat belong to each of these three categories.

.1. Semantics-based QA
ost semantics-based open-domain QA approaches take
dvantage of the lexico-semantic information encoded in
ordNet [8,9], a prominent terminological resource for the

eneral English domain.

ig. 5 – Architecture of semantic knowledge-based QA
ystems.
Sun et al. [17] Semantic relation analysis based on
frame representations of question and
answer

Vicedo and Ferrández [10] describe a QA system that uses
the semantic representation of the context of the expected
answer, generated using WordNet-based tools, in ranking and
selecting answers. Alfonseca et al. [11] report on a QA sys-
tem whose central part is the semantic distance measuring
module that makes use of all semantic relationships avail-
able in WordNet in order to estimate the semantic distance
between the question and a candidate answer. Hovy et al. [12]
describe semantics-based answer pinpointing that relies on a
syntactico-semantic analysis of the question and candidate
answers based on a hierarchical typology of semantic pat-
terns of question and answer. Fleischman et al. [13] present
an offline strategy for QA, which is based on the construc-
tion of a repository of the semantic relations between lexical
terms extracted from a text collection by using POS (part-of-
speech) patterns and a machine-learned classifier. Ferrés et al.
[14] describe a QA approach, which uses the representation of
the semantic environment of the question, based on the infor-
mation obtained from EuroWordNet [15], and the specification
of a set of semantic constraints to be satisfied by an answer.
Answer extraction relies on iterative relaxation of the seman-
tic constraints. Punyakanok et al. [16] present a QA technique
that selects answers based on dependency tree matching.
They represent the question and a candidate answer passage
as dependency trees augmented with semantic information,
and compute a generalized edit distance between the two
representations by using an approximate tree matching algo-
rithm. The candidate sentence that minimizes the distance is
considered most semantically similar to the question and is
chosen as the answer. Sun et al. [17] use syntactic dependency
analysis for the sake of query expansion, and use semantic
relation analysis, based on the frame-based semantic rep-
resentation generated by using a shallow semantic parser,
for semantic answer extraction. Answer passage selection is
done via computation of frame similarity scores, based on the
information in WordNet and eXtended WordNet [18]. Table 1
summarizes semantics-based QA approaches.
3.2. Inference-based QA

We review QA approaches that rely on some form of inference
or those that involve extracting semantic relations contribut-

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Table 2 – Inference-based QA approaches.

Approach Inference method/mechanism used

Lin and Pantel [23] Method for discovery of inferences rules
Girju [24] Method for detection of causal relations
Beale et al. [25] Inference on events based on ontological scripts
Harabagiu et al. [26] Inference and reference resolution mechanisms
Narayanan and Harabagiu [27] Probabilistic inference based on frame structure and argument-predicate structure
Narayanan and colleagues [28,31] Probabilistic inference on events/actions based on parameterized model of events/processes
Harabagiu and Bejan [34] Temporal inference

ent
event
Shen and Lapata [35] Method for assessm
Katz et al. [37] Inference on inter-

ing to inference. Some use resources such as FrameNet
[19,20] and PropBank [21,22] in obtaining frame or predicate-
argument structures.

Lin and Pantel [23] present an unsupervised algorithm
for discovering inference rules from text, which relies on
finding similar paths in the dependency tree of a parsed
corpus. Girju [24] proposes a method for automatic detec-
tion and extraction of causal relations from text. Beale et
al. [25] describe a QA system where an ontological seman-
tic analyzer generates frame-based semantic representations
from text, and ontological scripts enable the system to infer
events and states. Harabagiu et al. [26] describe a QA sys-
tem that uses multiple bridging inference mechanisms and
reference resolution algorithms in extracting answers to com-
plex and contextual questions. Narayanan and Harabagiu
[27] present a QA approach that uses probabilistic inference,
based on frame and predicate-argument structures, a topic
model, and a set of conceptual schemas. In [28], Narayanan
and Harabagiu incorporate a probabilistic relational model
of actions and events [29,30] in the QA system to allow it
to perform inference to answer questions involving causal
and temporal aspects of complex events. Within the same
framework, Sinha and Narayanan [31] report on an answer
selection approach that focuses on the ability of a parameter-
ized model of events and processes, based on an action/event
ontology [32,33], to improve the ranking of candidate answers.
Harabagiu and Bejan [34] present a QA methodology for
handling temporal inference based on the relations of the
expected answer to the temporal expressions in the question

or candidate answers. Shen and Lapata [35] assess the contri-
bution of automatic semantic role labeling [36] to factoid QA,
by treating semantic role assignment as a global optimization
problem in a weighted bipartite graph, and answer extrac-

Table 3 – Logic-based QA approaches.

Approach L

Harabagiu et al. [38] FOL theorem prover us
Moldovan et al. [39–41] COGEX theorem prover
Mollá et al. [42,43] ExtrAns QA system usi
Benamara [44] WEBCOOP QA system u
Waldinger et al. [45] QUARK QA system usin
Curtis et al. [47] QA system using Cyc K
Clark et al. [49] FOL representation of c
Tari and Baral [50] AnsProlog for represen
Baral et al. [52] AnsProlog plus Constra
Bobrow et al. [53] Textual Inference Logic
of semantic role labeling
relationships

tion as an instance of the graph matching problem. Katz et
al. [37] describe a language-driven QA approach which uses
semantic decomposition of questions and resource content
into lower-level assertions that provide a basis for inference
on inter-event relationships. Table 2 summarizes inference-
based QA approaches.

3.3. Logic-based QA

We review QA approaches that employ explicit logic forms
(LFs) and theorem proving techniques. Most approaches adopt
First Order Logic (FOL) based formalisms.

Harabagiu et al. [38] discuss a QA system that uses a the-
orem prover, based on FOL Logic Form Transformation (LFT)
of question/answers. Moldovan and Rus [39] discuss conver-
sion of WordNet glosses into axioms via LFT in the context
of eXtended WordNet (XWN). Moldovan et al. [40] report on
the implementation of the COGEX logic prover, which takes in
Q/A LFs and WXN/NLP axioms and selects answers based on
the proof score. In [41] Moldovan et al. discuss enhancing the
capabilities of COGEX by incorporating semantic and contex-
tual information during LF generation. Mollá et al. [42] present
ExtrAns, a QA system applied to the Unix domain, which uses
Minimal Logical Forms (MLFs) that are converted to Prolog
facts/queries. In [43] Mollá compares MLFs with grammatical
relations as the overlap-based similarity scoring measures for
answer ranking. Benamara [44] presents a QA system applied
to the tourism domain, called WEBCOOP, which operates on
a deductive KB that contains facts, rules, and integrity con-

straints encoded in Prolog, and a set of texts indexed via FOL
formulae. Waldinger et al. [45] discuss QUARK, a QA system
which uses the FOL theorem prover SNARK [46] that generates
answers by linking domain axioms with factual knowledge

ogic formalism/reasoning mechanism used

ing Q/A LFs
using Q/A LFs and XWN/NLP (and semantic/ontological) axioms

ng MLFs converted into Prolog facts and queries
sing Prolog-encoded KB and FOL-indexed text set
g FOL theorem prover SNARK operating on domain axioms and KBs
B encoded in CycL
ontextual knowledge
tation and reasoning
int Logic Programming

dx.doi.org/10.1016/j.cmpb.2009.10.003
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rom multiple sources. Curtis et al. [47] describe a system
hich uses the Cyc KB [48] to support deductive QA. Clark et

l. [49] present a layered approach to the FOL representation of
ontextual knowledge, coupled with reasoning mechanisms,
o enable contextual inference and default reasoning for QA.
ari and Baral [50] propose a QA system that uses AnsProlog
or representation and reasoning, Link Grammar [51] for fact
xtraction, and WordNet for disambiguation. Baral et al. [52]
resent a QA system that combines AnsProlog and Constraint
ogic Programming, to enable textual inference on events,
ctions, and temporal relations. Bobrow et al. [53] describe
extual Inference Logic (TIL) as a representation language for
A. Table 3 summarizes logic-based QA approaches.

. State of the art in biomedical QA

ased on our discussions so far, in this section we embark on
he main task in this paper: a detailed review of the current
tate of research on biomedical QA.

.1. Biomedical QA: background

.1.1. Open-domain QA vs. restricted-domain QA
ost semantic knowledge-based QA systems, techniques, and

pproaches that we reviewed in the previous section deal with
pen-domain QA, while others concern restricted-domain
A in domains other than the biomedical domain. As Mollá
nd Vicedo [6] point out in their recent overview of QA in
estricted domains, there are important factors that distin-
uish restricted-domain QA from open-domain QA. Those
actors include: (1) size of the data, (2) domain context, and
3) resources. The size of the data available for general open-
omain QA tends to be quite large, which justifies the use of
edundancy-based answer extraction techniques. In the case
f restricted-domain QA, however, the size of the corpus varies
rom domain to domain, and redundancy-based techniques
ould not be practical for a domain with a small corpus size.

n restricted-domain QA, the domain of application provides
context for the QA process. This involves domain-specific

meanings of) terminologies and domain-specific types of
uestions, which also differ between domain experts and non-
xpert users. Finally, a major difference between open-domain
A and restricted-domain QA exists in the availability of
omain-specific resources and the incorporation of domain-
pecific information in the QA process in the latter.

.1.2. Characteristics of biomedical QA
everal biomedical QA researchers have discussed the differ-
nces between general open-domain QA and domain-specific
A, and the peculiar characteristics and challenges of the
iomedical domain as an application domain for QA. Yu
nd Sable [54], for example, note that restricted-domain QA
an exploit domain-specific knowledge resources for deeper
uestion processing and that it may take advantage of a
omain-specific typology of questions in order to develop

nswer extraction strategies appropriate for each question
ype. Similarly, Rinaldi et al. [55] observe that restricted-
omain QA can exploit deeper text analysis/processing, taking
dvantage of domain-specific formatting and style conven-
n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 5

tions as well as domain-dependent terminology. They also
point out the fact that, in contrast to open-domain QA for
which generic NER is a major concern, in restricted-domain
QA domain-dependent terminology plays a major role and
presents a major challenge. In his brief overview of QA in
the biomedical domain, Zweigenbaum [56] also notes that
biomedical QA, in contrast to open-domain QA, is challenged
with a more acute need to cater for specialized terminological
variation, and that the gap in technicality between non-expert
user questions and target documents may be larger than in
other restricted domains. Along a similar line, Niu et al. [57]
discuss the differences between general QA and medical QA
in particular. Most recently, Zweigenbaum [58] notes the role
of (domain-specific) knowledge and reasoning for restricted-
domain QA, such as (bio-)medical QA, versus open-domain
QA. As he notes, knowledge and reasoning may be both more
necessary and more manageable for the former compared to
the latter, due to the relative specificity or difficulty of ques-
tions and due to the relatively limited scope of questions.

Some of the characteristic features of QA in the biomedi-
cal domain, particularly in terms of the aforementioned three
major factors that distinguish restricted-domain QA, namely,
dataset size, domain-dependent context, and domain-specific
resources, may be summarized as follows:

1. Large-sized corpora (described below).
2. Highly complex domain-specific terminology.
3. Domain-specific lexical, terminological, and ontological

resources (described below).
4. Tools and methods for exploiting the semantic information

embedded in the above resources (described below).
5. Domain-specific format and typology of questions (medical

QA, described below).

4.1.3. Resources for biomedical QA
While the biomedical domain poses a particular challenge
for QA, with a huge amount of literature and highly com-
plex domain-specific terminology, it also provides various
resources that can be exploited for QA, as Zweigenbaum [56]
also notes in his overview. Here we review some of the well-
known and oft-used knowledge resources in the biomedical
domain.

The primary corpora for text-based QA in the biomedical
domain are accessible through PubMed and PubMed Central.
PubMed, a service provided by the National Library of Medicine
(NLM), under the U.S. National Institutes of Health (NIH), con-
tains over 17 million citations from MEDLINE, a bibliographic
database (DB) of biomedical literature, and other biomedical
and life science journals dating back to the 1950s. It is accessi-
ble through the National Center for Biotechnology Information
(NCBI). PubMed Central (PMC) is a digital archive of full-text
biomedical and life science articles, maintained and updated
by the NIH. Also available in the biological domain is a
semantically annotated corpus of MEDLINE abstracts involv-
ing protein reactions, developed by the University of Tokyo
within the GENIA project [59].
Due to the acute need of systematically organizing,
updating, and cross-referencing its highly complex domain-
specific terminology, and of making it machine-readable
and machine-understandable, the biomedical domain has

dx.doi.org/10.1016/j.cmpb.2009.10.003
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developed various lexical, terminological, and ontological
resources.

Medical Subject Headings (MeSH), the NLM’s controlled
vocabulary thesaurus, consists of medical subject descriptors
in a hierarchical taxonomic structure which allows search at
various levels of specificity.

Systematized Nomenclature of Medicine—Clinical Terms
(SNOMED CT), originally created by the College of Ameri-
can Pathologists (CAP), is the most comprehensive clinical
terminology available, which was formed by the merger of
SNOMED RT (Reference Terminology) and the U.K. National
Health Service (NHS) Clinical Terms. SNOMED CT is a current
U.S. standard for electronic health information exchange, and
is accessible through NLM and the National Cancer Institute
(NCI).

Arguably, the semantic knowledge resources that are most
frequently exploited in biomedical QA are those of the Uni-
fied Medical Language System (UMLS), provided by NLM. There
are three UMLS knowledge resources: the Metathesaurus, the
Semantic Network, and the SPECIALIST Lexicon.

The UMLS Metathesaurus is a comprehensive, multi-
lingual biomedical vocabulary database that contains infor-
mation on biomedical and health-related concepts, their
various names, and the semantic relationships between
them. The Metathesaurus is constructed from various source
vocabularies, and retains the concept meanings, names, and
relationships from the original sources, even in the presence
of conflicts among different source vocabularies. As such, it is
not meant to represent a coherent biomedical ontology with
a single, consistent view.

The UMLS Semantic Network contains information on the
set of semantic types and the set of semantic relationships
that may hold between these semantic types. The Semantic
Network provides a consistent categorization of the concepts
in the Metathesaurus, by means of the semantic types that can
be assigned to those concepts and the semantic relationships
that can be defined between them. The latest release of the
Semantic Network contains a total of 135 semantic types and
54 semantic relationships, both of which are hierarchically
organized.

The UMLS SPECIALIST Lexicon is a general English lexi-
con whose coverage includes both common English words and
biomedical terms. The Lexicon has been developed to provide
the lexical, syntactic, and morphological information needed
by the SPECIALIST NLP System.

Somewhat similar to NLM’s UMLS, NCI’s Enterprise Vocabu-
lary Services (EVS) include the Thesaurus, the Metathesaurus,
and the Terminology Browser. The NCI Thesaurus con-
tains definitions, synonyms, and other information on terms
related to cancer and biomedical research. The NCI Metathe-
saurus is a large biomedical terminology database which
contains the vocabularies from the UMLS Metathesaurus as
well as other cancer-related vocabularies. The NCI Terminol-
ogy Browser provides access to lexical, terminological, and
ontological resources, including SNOMED CT and the Gene
Ontology (GO).
While various terminological resources in the biomedical
domain provide quasi-ontological functions, the domain also
has resources that are specifically intended as structured for-
mal ontologies.
i n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24

The OpenGALEN ontology, a European project, rigorously
defines complex medical concepts in terms of primitive con-
cepts and roles (relations) based on a Description Logic (DL)
formalism [60]. GO consists of three structured ontologies for
genomics, which describe gene products in terms of associ-
ated cellular components, biological processes, and molecular
functions. The GENIA corpus is based on the GENIA ontol-
ogy, which is intended as a formal model specifically of cell
signaling reactions in human.

Besides the aforementioned resources, there are also oft-
used tools and techniques that have been developed to
help exploit the semantic information contained in those
resources. MetaMap [61] (its implementation as MetaMap
Transfer (MMTx)) and SemRep [62] are often used by
researchers working on biomedical NLP and Text Mining,
including biomedical QA researchers, in order to map terms in
free text to UMLS Metathesaurus concepts and UMLS Seman-
tic Network semantic relationships, respectively.

The ClinicalQuestions Collection maintained by the NLM
is a growing repository of questions that have been collected
from healthcare providers in clinical settings across the US.
The repository includes 4049 questions collected by Ely et al.
[63,64] and 605 questions collected by D’Alessandro et al. [65].
The questions can be searched by keywords and by specific
criteria, such as disease/condition, physician specialty, patient
age, patient gender, etc.; they can also be browsed by disease
category, question source, and question elements. (Table 4).

4.2. Medical QA

4.2.1. Introduction to medical QA
In order to discuss QA for the medical domain, we need to first
cover some background information.

A dominant paradigm in the medical/clinical field is that of
Evidence-Based Medicine (EBM) [66,67], which refers to the use
of the best evidence obtained from scientific research in mak-
ing clinical decisions. Within the EBM framework, physicians
are urged to ask questions in order to find the best available
evidences.

There have been several investigations [63,68–78], often
conducted by medical researchers and practitioners, con-
cerning the usage and effectiveness/efficiency of the online
biomedical resources in answering medical/clinical questions.
While those studies have validated the usefulness of various
resources to a certain extent, they have also revealed serious
problems in the medical QA process. For example, Ely et al.
[63] have found that physicians spend on average 2 min or less
in seeking an answer, while Hersh et al. [72] have found that
it takes more than 30 min on average for a health care pro-
fessional to search for an answer. As a result, many clinical
questions go unanswered. Studies investigating the obstacles
to finding answers to medical/clinical questions [79,80] have
found physicians’ doubt about the existence of an answer,
excessive time required for search, difficulty of formulating
an answerable question, uncertainty about an optimal search
strategy, and failure of the selected resource to provide a syn-

thesized answer, among the main factors.

The EBM framework recommends a specific frame for
formulating a clinical question in searching for the best
available evidence, namely, Problem or Patient/Population,
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Table 4 – Resources for biomedical QA.

Resource Source

PubMed http://www.ncbi.nlm.nih.gov/sites/entrez
PubMed Central http://www.pubmedcentral.nih.gov/
GENIA http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
MeSH http://www.nlm.nih.gov/mesh/meshhome.html
SNOMED http://www.nlm.nih.gov/snomed/
UMLS http://www.nlm.nih.gov/research/umls/
NCI EVS http://www.nci.nih.gov/cancerinfo/terminologyresources
OpenGALEN http://www.opengalen.org/
Gene Ontology http://www.geneontology.org/

http://skr.nlm.nih.gov/
http://clinques.nlm.nih.gov/About.html
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ntervention, Comparison, Outcome (PICO) [81,82]. The PICO
ramework can be expanded to PICOTT, adding information
bout the Type of question asked or type of task involved,
.e., therapy, diagnosis, prognosis, etiology, etc., and the Type
f study design for that particular task/question [83]. Studies

83–85] have found the usefulness of the PICO/PICOTT frame
n facilitating answer discovery.

Within the EBM framework, medical/clinical domain-
pecific taxonomies of questions have also been developed.
ergus et al. [84] have developed a taxonomy of medical ques-
ions according to the PICO elements of the questions and
he categories of clinical tasks involved in the questions. Ely
t al. [63,79,86] have developed a generic taxonomy of com-
on clinical question types and an “Evidence Taxonomy” of

linical questions, from their studies with primary care doc-
ors. On the top level of the Evidence Taxonomy, questions are
lassified into Clinical vs. Non-clinical. The Clinical questions
re divided into General vs. Specific. The General questions
re classified into Evidence vs. No Evidence. The Evidence
uestions are further classified into Intervention vs. No Inter-
ention categories. Ely et al. have concluded that only the
vidence type questions are potentially answerable. Ely et al.’s
79] Evidence Taxonomy is shown in Fig. 6. Table 5 shows 10

ost common types of generic clinical questions as identified
y Ely et al. [63,86].

.2.2. Medical QA systems and approaches

n this section, we review current research efforts directed
oward QA in the medical (clinical) domain.

Table 5 – Ten most common clinical question types [86].

Question type
What is the drug of choice for condition X?
What is the cause of symptom X?
What test is indicated in situation X?
What is the dose of drug X?
How should I treat condition X (not limited to drug treatment)?
How should I manage condition X (not specifying diagnostic or

therapeutic)?
What is the cause of physical finding X?
What is the cause of test finding X?
Can drug X cause (adverse) finding Y?
Could this patient have condition X?
Fig. 6 – Ely et al.’s evidence taxonomy of clinical questions.

4.2.2.1. Preliminary approaches to medical QA. Among medi-
cal QA researchers, Huang et al. [87], Yu et al. [54,88,89], and
Kobayashi and Shyu [90] have investigated question classifi-
cation as a first step toward developing medical QA systems.

Huang et al. [87] examined the adequacy and suitability
of PICO as a representation framework for clinical questions
posed in NL, by means of manual classification of primary care
clinical questions. The study has reaffirmed the value of the
PICO framework overall, but also found that PICO is primarily
centered on therapy type questions and less suitable for other
types of questions. It has also noted that many UMLS semantic
types show strong associations with specific PICO elements,
while other semantic types can be mapped to more than one
PICO slot.

Yu and Sable [54] developed a question filtering compo-
nent that automatically determines whether or not a question
is answerable, based on the Evidence Taxonomy of Ely et al.
They used various supervised machine learning (ML) algo-

rithms, with bag-of-words features and semantic features
consisting of UMLS concepts and semantic types. The results
have shown that incorporating semantic features in general
moderately enhances the performance of question classifi-

dx.doi.org/10.1016/j.cmpb.2009.10.003
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.pubmedcentral.nih.gov/
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.nlm.nih.gov/snomed/
http://www.nlm.nih.gov/research/umls/
http://www.nci.nih.gov/cancerinfo/terminologyresources
http://www.opengalen.org/
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cation. The results have identified a probabilistic indexing
algorithm to be the best performer, with an accuracy rate
of 80.5%. In a follow-up study, Yu et al. [88] focused on the
harder task of automatically classifying questions into the
specific categories in the Evidence Taxonomy. The results
of the evaluation, conducted in a setting similar to that in
[54], have shown that Support Vector Machine (SVM) outper-
forms all other systems in most cases. The results have also
revealed that including UMLS concepts and semantic types as
additional features can enhance results in most cases. More
recently, Yu and Cao [89] explored supervised ML approaches
using SVM to automatically classifying ad hoc clinical ques-
tions into general topics, and both supervised approaches –
Logistic Regression and Conditional Random Fields (CRF) –
and unsupervised approaches – Inverse Document Frequency
(IDF) model and Domain Filtering – to automatically extract-
ing keywords from ad hoc clinical questions. The results
of the evaluation, using the NLM ClinicalQuestions Collec-
tion, have again shown that matching of question terms to
UMLS concepts and semantic types, using MMTx, resulted
in the highest performance increase for question classifica-
tion using SVM and for the unsupervised domain filtering
approach to keyword extraction. The results have also shown
that both supervised approaches outperformed unsupervised
ones for keyword extraction that, between the two supervised
approaches, CRF outperformed logistic regression.

Kobayashi and Shyu [90] examined the performance in
classifying clinical questions using alternative representa-
tions of questions generated from using different parsing
methods and augmented (or not) with the information on
UMLS concepts and semantic types. They used questions
labeled with Ely et al.’s taxonomic category information as well
as other questions. The results have shown that using UMLS
semantic types improves classification performance.

All of the above studies concerning question classification
have thus found the usefulness of the semantic information
obtained from the UMLS resources in performing the question
classification task.

Slaughter et al. [91] investigated the semantic patterns
of health consumers’ questions and physicians’ answers,
by manually identifying semantic relationships in the
question–answer pairs obtained from medical informa-
tion Web sites. Identification of the semantic relationship
instances within the question/answer texts was based on the
semantic relations in the UMLS. The results have indicated
that identification of causal relationships is fundamental to
QA. The study has also found that a direct correspondence
between the semantic representations of the questions and
those of the answers exists only about 30% of the time. The
study suggests that semantic relationships extracted from
real-life questions and answers can lead to clues for creating
semantics-based QA techniques.

In contrast to the above studies investigating various
approaches to medical question classification or identifying
common patterns found in questions and answers, as prelim-
inary steps toward building effective medical QA systems, Cao

et al. [92] recently evaluated the relative effectiveness of dif-
ferent kinds of answer presentation provided by a medical QA
system. The results of their evaluation have suggested that,
while sentence-based presentation is effective for some types
Fig. 7 – Yu et al.’s MedQA system architecture [94].

of questions, generally passage-based presentation is more
effective, thanks to the fact that it provides richer context and
that it matches relevant answers across sentences.

4.2.2.2. Non-semantic-knowledge-based medical QA systems
and approaches. Yu et al. [93,94] and Sang et al. [95] have
employed medical QA approaches that do not extensively
exploit domain-specific semantic knowledge.

Yu et al. [93,94] describe their implemented medical QA sys-
tem, MedQA, which generates paragraph-level answers from
both the MEDLINE collection and the Web. The system in its
current implementation deals with definitional questions (i.e.,
“What is X?”). MedQA incorporates text summarization in the
answer processing phase of the QA process (see Fig. 7).

Question classification in the MedQA system is done using
the approaches developed by Yu et al. in [54,88], described
above. For query formulation and document retrieval, Yu
et al. use a shallow syntactic parser and a standard IR
engine. For answer extraction, they employ multiple strate-
gies to identify relevant sentences, including the document
zone detection method for biomedical articles [96,97], sen-
tence categorization using cue phrases [98], and identification
of lexico-syntactic patterns that comprise definitional sen-
tences. For text summarization, MedQA uses hierarchical
clustering [99] and centroid-based summarization [100] tech-
niques. Yu et al. recognize the need for using a robust and
accurate domain-specific parser. They also note that the cur-
rent implementation of MedQA does not capture semantic
information which plays an important role for both answer
extraction and text summarization. They plan to incorpo-
rate the results from their previous work [101], which found
statistical correlation and dependence relation between the
semantic types of a definitional term and the semantic types
and lexico-syntactic patterns of definitional sentences.

In [94,102], Yu et al. present cognitive evaluation of
MedQA against three state-of-the-art internet search engines
– Google, OneLook, and PubMed – for answering definitional
questions posed by physicians. The results indicate that
Google is an effective search engine for medical definitions,
but that MedQA exceeds search engines insofar as it provides
direct answers to user questions. Yu et al. suggest the desir-
ability of combining an effective search engine, such as Google,
with a domain-specific QA system.

Sang et al. [95] describe ongoing work in developing a
Dutch-language medical QA system. They use two different

offline strategies for information extraction, one exploiting
the regular layout of a Dutch medical encyclopedia, and the
other using syntactic patterns based on dependency relations
for extracting semantic tuples. Their analysis of the evalua-
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Table 6 – Semantic models of medical questions [73].

Semantic model
[Which X]–(R)–[B]
[A]–(R)–[which Y]
Does [A]–(R)–[B]
Why [A]–(R)–[B]
[Which X,Y]–(R)–[B]
[Which X]–(R)–[B,C]
Duration [A]–(precedes)–[B]
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[115]. The system accepts queries in the PICO format. The front
Define [A]
Which specific precaution if [A]–(R)–[B]

ion results suggests that lack of coverage is the main source
f error and that ontological knowledge of the domain would
e very useful in improving the performance of the QA sys-
em. In this regard, they cite the lack of available non-English
emantic knowledge resources as a challenge.

.2.2.3. Semantics-based medical QA systems and approaches.
acquemart and colleagues [73,103], Niu et al. [57,104–106],
emner-Fushman et al. [107–111], and Weiming et al. [112]
ave explored semantics-based medical QA approaches.

Jacquemart and colleagues [73,103] present semantics-
ased approaches toward the development of a French-

anguage medical QA system.
In their study on the feasibility of the medical QA system,

acquemart and Zweigenbaum [73] examined the issues as
o whether documents relevant to medical questions can be
ound through Web search and as to whether medical ques-
ions can be semantically modeled and categorized in the
onceptual framework of their prototype QA system. For the
urpose of the study, they used 100 clinical questions on oral
urgery, each of which was converted into a canonical form, by
implifying complex questions into more direct questions or
y instantiating the context of context-dependent questions.

Concerning the first issue of their focus, Jacquemart and
weigenbaum have found Google to be the best Web search
ngine for the task. However, considering that out of 100 ques-
ions only 60% obtained relevant results in the top five hits,
hey note that the high specialization of the medical domain
nd the clinical orientation of the questions, coupled with
he more limited online resources available for the French
anguage, may restrict the quantity of material available for
nswering the questions.

Concerning the second issue, Jacquemart and Zweigen-
aum modeled the forms of the 100 medical questions as
yntactico-semantic patterns, in order to identify regulari-
ies and to capture their semantic content. These patterns
ere obtained by generalizing the canonical forms to the

eneric domain-specific categories. They then constructed
emantic models of the questions, in the form of a semantic
riple [Concept]–(Relation)–[Concept], by identifying the rele-
ant semantic relations in the UMLS Semantic Network. They
btained 66 distinct syntactico-semantic patterns which were
ategorized into eight generic semantic models. Three of these
emantic models, which accounted for 90 out of 100 ques-

ions in the collection, fit the semantic triple representation
A]–(R)–[B] with a modality “which”, “does”, or “why” (see
able 6).
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Jacquemart and Zweigenbaum note that automating the
conversion of questions into canonical forms needs more
research. Exploiting UMLS semantic relations for this task
requires one to find a good fit between NL terms and those
relations. They thus consider using UMLS semantic types for
concepts as a natural follow-up task.

In a follow-up study, Delbecque, Jacquemart, and Zweigen-
baum [103] explore the use of UMLS concepts and semantic
types for medical domain-specific NER (named entity recog-
nition), and of semantic relations for answer extraction for
specific types of medical questions.

They present an experiment in semantically tagging a
French-language medical text collection, obtained from var-
ious health-related Web sites, with UMLS concepts, semantic
types, and semantic relations, in the context of a QA
system. The system first tags the corpus with POS (part-of-
speech) information, and uses the POS patterns to locate
noun phrases. It then tags the noun phrases with Metathe-
saurus concepts and associated Semantic Network semantic
types. After the noun-processing phase, the system also uses
POS patterns to locate clauses, roughly structured in the
form of [Subject]–[Verb]–[Complement], in order to detect co-
occurrences of semantic types. In the case of a co-occurrence
of semantic types that are linked by a semantic relation, the
clause is tagged with that semantic relation, which completes
the tagging process.

Delbecque et al. evaluated the quality of the tagging process
by identifying and examining missing tags and false tagging.
They also used ascending hierarchical classification to inves-
tigate the match between the meaning of semantic relations
and the meaning of tagged clauses. More importantly, they
evaluated the usefulness of treating semantic relations as NEs
(named entities) in a medical QA context, by using the rela-
tion “treats” as a criterion for selecting clauses as answers
to specific types of questions, such as “What is the treat-
ment for. . .?”, and by examining the precision of answers thus
obtained.

In concluding the study, Delbecque et al. note the impor-
tance of taking into account the individual origin of the
documents in which search is done, when using semantic rela-
tions as NEs. They also recognize that further work needs to
be done to improve the tagging process, by using more sophis-
ticated linguistic tools.

Niu et al. [57,104–106] have reported on their work in
progress on NL analysis for medical QA within the EPoCare
(Evidence at Point of Care) project. The EPoCare system is
based on keyword-based query/retrieval. The goal of Niu et
al.’s work is to allow the system to accept questions in NL and
to better identify answer from NL data sources, the latter of
which is their initial focus.

The two main components of the EPoCare system are the
XML document DB containing the data and the EPoCare server
that uses the DB to provide answers to queries (see Fig. 8). The
current data sources include Clinical Evidence (CE) [113] and
Evidence-Based on Call (EBOC) [114]. The XML DB is manipu-
lated by a repository manager for XML data, called ToX Engine
controller takes a clinical question and formulates a keyword
query. The retriever sends the query to the XML document
DB to retrieve relevant documents using keyword matching.

dx.doi.org/10.1016/j.cmpb.2009.10.003
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The query-answer matcher finds answer candidates from the
retrieved results. The best answer is selected and returned to
the user. The keyword-based retrieval is based on a precon-
structed set of answer patterns which consists of XML paths
for each of the four PICO categories. The system is supposed
to identify XML paths in the data that contain all the keywords
in the question, filtering out those paths that do not constitute
meaningful contexts for the PICO categories corresponding to
those keywords, so as to find those paths that satisfy answer
patterns.

In [104], Niu et al. propose a QA approach that locates
answers by means of identification, in both question and
answer texts, of semantic roles which correspond to the four
fields in the PICO frame. The approach is based on first identi-
fying the four roles represented by PICO in the texts of the NL
question and the candidate answers and then comparing the
roles in the question and the corresponding roles in the candi-
date answers in order to determine whether or not a candidate
is a correct answer. In order to apply the role-based method in
QA, Niu et al. consider the problems of detecting PICO roles in
text, determining the textual boundary of each role, and iden-
tifying the relationships between different roles, with a focus
on therapy-related questions. They note that Outcome is the
most difficult non-NE role to detect.

In a follow-up study, Niu and Hirst [57] focus on identify-
ing semantic classes in the medical text. For identifying the
semantic classes Disease and Medication, they used some
training text to find the mapping between UMLS semantic

types and the two semantic classes, using MetaMap. For the
more complicated task of identifying Outcome, they collected
cue words from CE, obtained POS and phrase information
from the text, and then identified the boundary of clinical

Fig. 8 – Niu et al.’s EPoCare system architecture [104].
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outcomes for each POS category of cue words. In analyzing
the relations between semantic classes, they have found that
these relations can also be identified by a set of cue words.
They note that in a specific domain such as medicine, some
default relations often hold between semantic classes, e.g., the
cause-effect relation holding between the semantic classes
Medication, Disease, and Outcome. Niu and Hirst suggest that
semantic classes and their relations have important roles for
medical QA. In addition, they consider the task of identifying
the polarity of outcomes from medical text.

Continuing in [105], Niu et al. focus on the problem of
automatically detecting and classifying clinical outcomes in
the medical text. They applied NLP and ML techniques to
detect four possible classes of outcome polarity: no outcome
and positive, negative, or neutral outcome. With 1509 sen-
tences collected from CE as the data set, Niu et al. used SVM
(Support Vector Machine) to perform the classification task.
The results revealed that the highest accuracy (79.42%) was
achieved by combining linguistic features, encoding context
information, with domain knowledge, using information on
the UMLS semantic types.

In [106], Niu et al. use a multi-document summariza-
tion approach to finding answers to clinical questions about
effects of using a medication for disease treatment. They
collected 197 MEDLINE abstracts that were cited in CE, and
annotated each sentence with information on the presence
of clinical outcomes and their polarity. The results of eval-
uation of outcome classification using SVM again showed
that combining context information and domain knowledge
leads to the best performance. For the task of identifying sen-
tences that are important in answering clinical questions,
Niu et al. used additional features that had been shown to
be effective in text summarization, such as sentence posi-
tion, sentence length, presence of numbers in a sentence, and
maximal marginal relevance (MMR) [116]. While the results
of evaluation using ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) [117] showed little difference in perfor-
mance between different feature combinations, those from
sentence-level evaluation using SVM showed that detecting
the presence and polarity of outcomes is helpful in answer
extraction. The additional benefit from determining the polar-
ity, not just the presence, of clinical outcomes, however, was
shown to be small, pointing to the need of a more accurate
polarity detection system.

Demner-Fushman et al. [107–111] have pursued a similar
line of research as Niu et al., with their view of PICO frame
as the core organizing knowledge structure for a clinical med-
ical QA system, and of clinical QA as a matter of semantic
unification between the PICO frame of the query and that of
answers.

Demner-Fushman and Lin [107] describe semantic knowl-
edge extractors that they developed as a component of a
clinical QA system to identify PICO frame elements from MED-
LINE abstracts and to classify their evidence grade level. As
the basis for determining the quality of evidence, they use
the Strength of Recommendations Taxonomy (SORT) as devel-

oped by Ebell et al. [118], which grades evidences as A-, B-, and
C-level according to their objective validity and strength.

Demner-Fushman and Lin extensively use MetaMap [61]
and SemRep [62] in order to identify UMLS concepts and
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emantic relations from text. In addition, they use more
oarse-grained semantic groups [119] in order to capture
igher-level generalizations. They also take advantage of dis-
ourse markers present in some abstracts.

Demner-Fushman and Lin consider the task of identifying
linical outcomes from primary literature sources, as vs. from
econdary sources used by Niu et al., to be a harder task. Their
opulation, Problem, and Intervention/Comparison extraction
odules use manually constructed pattern-matching rules;

he Outcome extractor module, in contrast, employs super-
ised ML techniques to perform a classification task at the
entence level using an ensemble of classifiers including a
emantic classifier. Demner-Fushman and Lin note that iden-
ification of entities at the semantic class level simplifies
xtraction of PICO elements.

In [108], Demner-Fushman et al. present a scheme for
nnotating clinically relevant elements in MEDLINE citations,
long the categories of Background, Population, Intervention,
tatistics, Outcome, Supposition, and Other, and discuss the
valuation of the supervised ML-based automatic Outcome
xtractor developed in [107] in detail. They assessed automatic
utcome identification in terms of the accuracy and posi-
ive predictive value and in terms of the effectiveness of the
utcome-based ranking of MEDLINE search results obtained
hrough PubMed Clinical Queries. The results showed the
ccuracy of automatic outcome identification to be 88–93%,
ith the positive predictive value of outcome sentences rang-

ng from 30% to 37%. The outcome-based document ranking
as shown to improve precision in retrieval by up to 389%, sug-

esting the potential validity of the EBM/PICO model approach
o clinical QA.

In [111], Lin and Demner-Fushman introduce a generic
ramework for semantic knowledge-based conceptual
etrieval and discuss its instantiation in the clinical domain.
hey note that three categories of knowledge necessary for
onceptual retrieval are readily accessible in the clinical
omain, two of which are provided by the EBM paradigm:

1) knowledge about the problem structure (PICO frame), (2)
nowledge about user tasks (four types of clinical tasks and
trength of evidence considerations), and (3) knowledge about
he domain (UMLS resources).

According to the proposed framework, a clinical QA sys-
em requires three components: (1) knowledge extractors for
xtracting PICO elements from free-text abstracts, (2) seman-
ic matcher for scoring and ranking citations, and (3) answer

enerator that produces responses for physician users. Lin
nd Demner-Fushman use the first component (knowledge
xtractors) as developed in [107], and here focus on the cita-
ion scoring algorithm for the second component (semantic

Fig. 9 – Demner-Fushman et al.’s clinical QA
b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 11

matcher). The algorithm computes the relevance of a MED-
LINE citation as a weighted linear combination of a few factors:
matching PICO frames, the strength of evidence in the citation,
and associated MeSH terms that indicate appropriateness for
clinical tasks. In the evaluation, the citation scoring algorithm
was shown to dramatically outperform a state-of-the-art base-
line.

In [110], Demner-Fushman and Lin discuss a clinical QA
system based on the knowledge extractors in [107] and the
citation scoring algorithm in [111], which employ a combina-
tion of knowledge-based and statistical techniques. Instead of
using NL questions, they use a structured PICO query frame as
the input to the QA system, obviating the need for linguistic
analysis of NL questions. In accordance with their conception
of a semantic knowledge-intensive clinical QA system based
on conceptual retrieval, the system architecture consists of a
query formulator, knowledge extractors, a semantic matcher,
and an answer generator (see Fig. 9).

The query formulator converts a clinical question (in a PICO
query frame) into a PubMed search query. PubMed returns a
list of MEDLINE abstracts, which is then analyzed by knowl-
edge extractors. The input to the semantic matcher is the
query frame and annotated MEDLINE abstracts. The answer
generator takes a reranked list of citations, and extracts tex-
tual answers to physicians’ questions, presenting the title of
the abstract and the top three outcome sentences.

Demner-Fushman and Lin used 50 clinical questions col-
lected from two online sources, Journal of Family Practice [120]
and Parkhurst Exchange [121], and performed three different
evaluation tasks—one focusing on the accuracy of knowledge
extractors, one evaluating the document reranking task, and
one manual evaluation by two physicians. The results have
shown that the system significantly outperforms the PubMed
baseline.

In [109], Demner-Fushman and Lin explore a hybrid
approach to clinical QA, which combines techniques from IR
and text summarization. They tackle a frequently occurring
class of questions in the form of “What is the best drug treat-
ment for X?” (cf. Table 5).

Given an initial set of MEDLINE abstracts retrieved through
PubMed, the system first identifies the drugs under study,
using the Intervention extractor in [107]. The system groups
the retrieved MEDLINE abstracts into semantic clusters based
on the main interventions identified in the abstract text,
and uses a variant of hierarchical agglomerative clustering

algorithm [122] which utilizes UMLS semantic relations in
order to compute similarities between interventions. For each
MEDLINE abstract, the system generates a short extractive
summary consisting of the main intervention, the title of the

system architecture (taken from [110]).

dx.doi.org/10.1016/j.cmpb.2009.10.003
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abstract, and the top-scoring outcome sentence identified by
the Outcome extractor in [107,108].

Demner-Fushman and Lin conducted two evaluations so as
to assess the quality of the system output—a manual evalua-
tion focused on the cluster labels (i.e., drug categories), and an
automatic evaluation of the retrieved abstracts using ROUGE.
They randomly selected 30 diseases from the CE in order to
generate the question sets. They also collected MEDLINE cita-
tions associated with each disease, and used them as the
reference summaries for the ROUGE-based automatic evalu-
ation. The results of both evaluations have shown that the
system outperforms the PubMed baseline, once again demon-
strating the value of semantic resources in the QA process.

Weiming et al. [112] propose a clinical QA approach, which
incorporates semantic clustering, based on the semantic
representations of questions and documents using UMLS con-
cepts, semantic types, and semantic relations.

In the question analysis phase, Weiming et al.’s system
parses a question using MetaMap Transfer (MMTx) and Sem-
Rep to identify medical concepts and relations. The system
uses noun keywords and concept mapping rules for interpret-
ing the semantic relationships in the question and documents.
The medical concepts generated in the question analysis
phase, together with their synonyms, acronyms, and abbrevi-
ations, are used to retrieve relevant documents and to select
candidate sentences. In the answer extraction phase, phrase-
level answers are generated from candidate sentences by
mapping the semantic types and relations in these candidates
and those in the question. In the semantic clustering phase,
answers are clustered based on the hierarchical relationships
in the UMLS. The system lists three kinds of information for
each answer: semantic type, associated concepts, and the sen-
tence from which the answer originates.

Weiming et al. evaluated their system on a set of 200
documents concerning different aspects of headache, i.e.,
medication, therapy, etiology, etc., with factoid questions
and complex questions. The results showed that the system
achieved 78% recall and 94% precision on factoid questions,
and 75% recall and 86% precision on complex questions. The
average recall and precision were 77% and 92%, respectively.

4.2.2.4. Logic-based medical QA systems and approaches. Terol
et al. [123] have explored a logic-based approach, in adapting a
generic restricted-domain QA system to the medical domain.
The medical QA system is designed to answer NL questions
that belong to the 10 most frequent generic medical ques-
tion types in Ely et al.’s generic taxonomy of clinical questions
(see Table 5). The QA processing in the system is based on the
derivation of LFs (logic forms) from texts through the applica-
tion of NLP techniques and on the complex treatment of the
derived LFs.

Terol et al.’s medical QA system consists of four main pro-
cessing modules, as shown in Fig. 10.

The four main QA processing stages rely upon sentence
preprocessing and LF derivation as well as upon medical NER
and question pattern generation.
The LF of a sentence is derived by applying NLP rules to the
dependency relationship of the words in the sentence. Terol
et al. use the broad-coverage parser Minipar [124] in order to
obtain the dependency relationships. Once the dependency
Fig. 10 – Terol et al.’s medical QA system architecture [123].

relationships are obtained, the LF is derived by applying two
kinds of NLP rules to the dependency tree, starting in the
leaves, continuing through the ramifications of the tree, and
ending in the root.

Terol et al. note that their technique for deriving LFs is
different from other techniques such as the one used in
Moldovan et al.’s [40] COGEX system, which takes as input the
parse tree of a sentence, or that in Mollá et al.’s [42] ExtrAns
system, which employs the flat form as an intermediate step
between the sentence and the LF. Both in Moldovan et al.’s
system and in Terol et al.’s system, the identification of pred-
icates in the LFs is based on the format specified by the Logic
Form Transformation of eXtended WordNet [18,39], whereas in
Mollá et al.’s system it is accomplished through a more com-
plex terminology based on logic treatment. Terol et al. used
the technique for deriving LFs both in the question analysis
and answer extraction stages, similarly as in other systems.
Terol et al.’ medical domain-specific QA system, however, uses
inference rules deeper than those applied by Moldovan et al.
and Mollá et al. in the logic form treatment task.

The medical domain-specific NER task is accomplished by
retrieving from UMLS Metathesaurus information on the con-
cepts and semantic types corresponding to the arguments in
the LFs.

The offline task of question pattern generation consists of
defining the patterns that identify each generic question type.
Terol et al. describe schemes for manual pattern generation
and supervised automatic pattern generation, which involve
setting lower and upper thresholds for the number of medical
entities.
The core of Terol et al.’s medical QA system is the module
for question analysis. The question analysis phase consists
of question classification and question analysis. The ques-
tion classification task consists of derivation of the LF of the

dx.doi.org/10.1016/j.cmpb.2009.10.003
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ig. 11 – Process of question classification in Terol et al.’s
ogic-based medical QA system [123].

uestion, extraction of the main verb of the LF, medical NER,
omputation of medical entities score in question (MESQ)
hrough question form analysis, matching of the main verb
nd medical entities in the question LF with the verbs and
edical entities in the LFs of the patterns of generic ques-

ions, and finally selection of the pattern that best meets
he criteria (see Fig. 11). Question analysis consists of cap-
uring the semantics of the question using WordNet and
MLS Metathesaurus, recognition of the expected answer type
ccording to the classification of answer types corresponding
o the 10 generic question types, and identification of key-
ords through applying heuristics to the predicates and the

elationships between predicates in the question LF.
The document retrieval module in Fig. 10 uses Google to

etrieve relevant documents according to a predefined classi-
cation of medical Web sites. In the passage selection stage in
ig. 10, the system extracts sentences in the documents that
ontain at least one question keyword.

Finally, the answer extraction process consists of derivation
f the LF of a candidate answer sentence, identification of the
ain verb in the LF, comparison of the main verb with the set

f verbs that correspond to the generic question, recognition
f medical NEs in the LF, verification of whether or not the
edical NEs match the ones expected by the question, and

nalysis of the predicates relating the candidate answer, the
ain verb, and the rest of the medical NEs in the answer LF.
Terol et al. evaluated the question analysis module, obtain-

ng 94.4% precision on 250 questions.
.2.3. Summary of medical QA
brief summary of the medical QA approaches reviewed is

resented in Table 7.
b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 13

4.3. Biological QA

4.3.1. Introduction to biological QA
In contrast to the medical domain, where the EBM paradigm
provides a structured framework that can be exploited for QA,
we find, to our knowledge, no typology/taxonomy of biolog-
ical domain-specific questions, and, correspondingly, fewer
approaches that have explored biological domain-specific QA.
(In this review we exclude the approaches that belong to the
TREC Genomics Track, which remain at the level of passage
extraction.)

4.3.2. Biological QA systems and approaches
In this section, we review current research efforts directed
toward QA in the biological (or biomedical) domain.

4.3.2.1. Preliminary approaches to biological QA. Yu and Lee
[125,126] propose to build a biological QA system that pro-
vides experimental evidences as answers. As a first step, they
explore NLP techniques for identifying sentences that sum-
marize the images appearing in full-text articles. Their study
is based on a few assumptions: (1) that the content of images
appearing in a full-text article can be summarized by the sen-
tences in the abstract of the article, (2) that the content of
an image corresponds to the text description associated with
the image, and (3) that there are lexical similarities between
the descriptive text associated with each image and the cor-
responding sentence(s) in the abstract.

Yu and Lee used hierarchical clustering techniques to
cluster abstract sentences and images, based on the lexi-
cal similarities. Specifically, they explored three strategies for
linking abstract sentences to images: (1) per-image, which
clusters each image caption with abstract sentences, (2)
per-abstract-sentence, which clusters each abstract sentence
with image captions, and (3) mix, which clusters all image
captions with all abstract sentences. The results of evalua-
tion showed that both per-image and per-abstract-sentence
options outperformed mix, and that per-image significantly
outperformed per-abstract-sentence, thereby suggesting the
relative importance of the features in abstract sentences as
compared to those in image captions. One of the best systems
in the evaluation achieved a precision of 100% and a recall
of 4.6%. The user interface developed by Yu and Lee, BioEx,
which allows biologists to access images from abstract sen-
tences, was favored over two baseline systems (PubMed and
SummaryPlus [127]) by 87.8% of 40 biologists who evaluated
the interfaces.

4.3.2.2. Semantics-based biological QA systems and
approaches. Semantics-based approaches to biological
QA include those by Takahashi et al. [128], Lin et al. [129], and
Shi et al. [130].

Takahashi et al. [128] propose a semantics-based bio-
logical QA system, which utilizes UMLS, as well as
gene/protein/compound name and family name dictionaries
[131] and other thesauri, for resolving synonyms and han-

dling semantic classes. The semantic class information is used
in both question analysis and answer extraction. They used
approximately six million MEDLINE entries, after removing
the entries having only titles. In the preprocessing phase, each

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Table 7 – Summary of medical QA approaches.

Approach (Category); task concerned; technique used

Huang et al. [87] Question classification by manual evaluation.
Evaluation of the PICO framework.

Yu et al. [54,88,89] Question filtering and question classification using ML algorithms (w/ and w/o semantic information).

Kobayashi and Shyu [90] Question classification using different parsing methods (w/ and w/o semantic information).

Slaughter et al. [91] Analysis of semantic patterns of Q/A, based on UMLS semantic relations.

Cao et al. [92] Evaluation of different answer presentation formats.

Yu et al. [93,94,102] Non-semantic-knowledge-based.
MedQA system for definitional questions.
Incorporation of text summarization in QA.

Sang et al. [95] Non-semantic-knowledge-based.
Offline strategies for Dutch medical QA system.
Use of document layout and syntactic patterns based on dependency relations.

Jacquemart and colleagues [73,103] Semantics-based.
Semantic modeling of medical questions.
Use of UMLS concepts, semantic types and relations for NER and answer extraction.

Niu et al. [57,104–106] Semantics-based; PICO frame-based.
EPoCare system.
Identification of PICO roles in medical text.
Identification of semantic classes and relations.
Detection and classification of clinical outcome.
Incorporation of text summarization in QA.

Demner-Fushman et al. [107–111] Semantics-based; PICO frame-based.
Semantic knowledge extractors for identifying PICO elements from medical text.
Scheme for annotating MEDLINE abstracts w/ information on clinically relevant elements.
Scoring algorithm for semantic matching.
Use of semantic clustering and summarization.

Weiming et al. [112] Semantics-based.
Semantic interpretation of Q/A.
Incorporation of semantic clustering in QA.

Terol et al. [123] Logic-based.
Q/A.

conc
patte
Logic form transformation of
Medical NER based on UMLS
Question classification using

biological term in the document set was assigned with an ID
and semantic class.

The main QA process in the proposed system consists of
four phases (see Fig. 12). In the question analysis phase, the
question is parsed and corresponding answer types are spec-
ified, based on a predefined set of answer types, created by
utilizing UMLS and other thesauri. In the next phase, the sys-
tem first expands the query terms, based on the resources
and heuristics, to formulate queries for a full-text search. The
system uses the MySQL full-text search function to retrieve
relevant documents. In the next phase, the system selects
terms from the retrieved documents, whose semantic class
or superclass corresponds to the answer types determined in
the question analysis phase. If those terms and keywords in
the query are described in the sentences in certain relation-
ships, such as subject-object, or are positioned closely in the
abstract, the system selects them as answer candidates. The
output from this phase includes the candidate terms, their IDs,

and supporting evidences, including the sentences in which
they appear. In the final phase, the system selects the answer
from candidate terms, using a voting mechanism, if necessary.
The system presents the answer with the evidential sentence
epts and semantic types.
rn matching.

and abstracts.
Takahashi et al. mention that they are evaluating the sys-

tem by several methods.
Lin et al. [129] propose a QA system that uses syn-

tactic and semantic feature matching, which focuses on
answering factoid questions about biomolecular events, such
as gene–protein interactions, the corresponding answers to
which are biomedical named entities (NEs).

The QA process in the proposed system consists of four
stages: Question Processing, Passage Retrieval, Candidate
Extraction and Feature Generation, and Answer Ranking. The
question processing stage involves named entity recognition
(NER), semantic role labeling (SRL), question classification, and
query modification. The NER step extracts NEs from the ques-
tion. The SRL step then extracts predicates and corresponding
arguments. The question classification step uses hand-crafted
patterns to identify the target answer NE type. The query mod-
ification step uses WordNet and Longman’s dictionary [132]

to expand queries, which consist of the remaining phrases
from the SRL step excluding stop words, by including a list
of synonyms and other tenses for the main verb in the ques-
tion. In the passage retrieval stage, queries are sent to Google

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Table 8 – Argument types for semantic role labeling
[129].

Type Description

Arg0 Agent
Arg1 Direct object/theme/patient
Arg2-5 Not fixed
ArgM-NEG Negation marker
ArgM-LOC Location
ArgM-TMP Time
ArgM-MNR Manner
ArgM-EXT Extent
ArgM-ADV General-purpose
ArgM-PNC Purpose
ArgM-CAU Cause
ArgM-DIR Direction
ArgM-DIS Discourse connectives
ArgM-MOD Modal verb
ig. 12 – Takahashi et al.’s biological QA system
rchitecture [128].

nd Web pages are retrieved exclusively from Google’s index of
he PubMed database. In the candidate extraction and feature
eneration stage, NER and SRL are used to extract candidate
Es and corresponding features. The system uses the GENIA
agger [133] to identify four types of NE: protein, DNA, RNA,
nd cell. It also extracts biomolecular events expressed in
ominal form in which the relevant NEs are involved. The
RL component generates semantic features for answer rank-

ng by recognizing the predicate and corresponding argument
hrases from a sentence (see Table 8). The SRL step also checks
hether or not answer candidates generated from the NER

tep correspond to the expected type. In the answer ranking
tage, the system treats each NE extracted during the previ-
us stage as an answer candidate, and calculates a score for
ach candidate using a linear function of the weighted sum of
he candidate’s features. The features considered include both
yntactic and semantic ones, such as verb match, argument
atch, NE match, NE similarity, keyword similarity, argument

imilarity, consecutive word match, and Google reciprocal
ank.
Noting that QA system evaluation measurements may
uffer from the same score problem, Lin et al. propose an
mproved mean reciprocal rank (MRR) measurement, called

ean average reciprocal rank (MARR), as well as a formula to
ArgM-REC Reflexives and reciprocal
ArgM-PRD Marks of secondary predication

reduce the computational complexity of MARR. The evalua-
tion of the proposed QA system has shown that, when using all
eight features and tuning feature weights, the system achieves
a top-1 MARR of 74.11% and top-5 MARR of 76.68%, thereby
exhibiting 16.17% and 18.61% respective increases compared
to the baseline system configuration without using features.

Shi et al. [130] present BioSquash, a semantics-based
QA-oriented multi-document summarization system for the
biomedical domain, built upon a general-purpose summa-
rizer, Squash [134].

The BioSquash system consists of four main components
(see Fig. 13). The annotator module annotates the documents
and the question text with syntactic and shallow semantic
information, utilizing the GENIA ontology for biomedical NER
and using automatic semantic role labeling [35]. The con-
ceptualizer (or concept similarity) module obtains biomedical
and general concepts and their semantic relations by utiliz-
ing UMLS and WordNet. The synthesizer (or extractor) module
constructs a semantic graph, based on the semantic role label-
ing and the semantic information on the documents and the
question text. It performs sentence selection based on the
selection of a sub-graph in the semantic graph. The module
also generates sentence clusters related to the question, based
on the measurement of sentence redundancy. The editor mod-
ule performs sentence ordering upon the sentence clusters,
eliminates irrelevant content, and generates the final sum-
mary.

Shi et al. evaluated the system by using MEDLINE abstracts
as the benchmark in lieu of expert-written summaries.
Evaluation results have suggested the usefulness of the sum-
marization system for QA.

4.3.2.3. Inference-based biological QA systems and approaches.
Kontos et al. [135,136] present an inference-based approach to
biomedical QA, in describing construction of an NL grammar
and analysis of textual rhetoric relations for their model-based

biomedical QA system AROMA.

The AROMA system is designed to provide model-based
explanations as answers to non-factoid questions, with the
use of rhetoric relation recognition and causal knowledge

dx.doi.org/10.1016/j.cmpb.2009.10.003
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ash system architecture [130].

Table 9 – Questions involving causal knowledge [135].

Question Abstract specification

Causal antecedent What caused some event to occur?
What state/event causally led to an
event/state?

Causal consequence What are the consequences of an
event/state?
What causally unfolds from an
event/state?

Enablement What object or event enables an
agent to perform an action?
Fig. 13 – Shi et al.’s BioSqu

extraction, automatically generating textual descriptions of
the behavior of a biomedical model.

Kontos et al. compare two possible methodologies for
applying deductive reasoning on texts. The first methodol-
ogy, employed by those approaches that we categorize in this
paper as “logic-based”, relies on the translation of texts into
formal representations of their content, upon which deduc-
tion is performed. The advantage of this methodology consists
in the simplicity and availability of the required inference
engine. Its disadvantage concerns the cost of reprocessing all
the texts and restoring their formal representations in the case
of changes. The second methodology eliminates the need for
translating the texts into formal representations by using an
inference engine capable of performing deduction “on the fly”,
i.e., directly from the texts. The disadvantage of this second
methodology is that it needs a more complex inference engine.
Its advantage is that it avoids the translation into a formal rep-
resentation. The AROMA system is intended to perform causal
reasoning “on the fly”, based on a representation-independent
syllogistic text analysis method [137].

The AROMA system consists of three subsystems. The
knowledge extraction subsystem extracts knowledge includ-
ing rhetoric relations from biomedical texts, and integrates
partial causal knowledge extracted from multiple texts. The
operation of this subsystem is based on the recognition of
noun phrases, verb groups, and their relations. The extracted
sentences are automatically converted into Prolog facts. The
causal reasoning subsystem generates answers and model-
based explanations of the answers, by applying inference
rules over the linguistic knowledge and domain knowledge
manually entered as Prolog facts, combined with the causal
knowledge extracted by the first subsystem. Finally, the
simulation subsystem generates time-dependent numerical

values for a model, which are compared with experimental
data.

Kontos et al. focus on causal knowledge involving the inter-
action of entities and events/processes. The AROMA system is
Instrumental/Procedural What instrument or body part is
involved when a process is
performed?

intended to answer causal questions such as those shown in
Table 9.

A pilot experiment using the GENIA corpus, however,
revealed some problems with automatic induction of gram-
mar rules meant to capture causal relations.

4.3.2.4. Logic-based biological QA systems and approaches.
Rinaldi et al. [55] have explored a logic-based approach to bio-
logical QA, in adapting Mollá et al.’s [42] ExtrAns system to the
genomics domain.

The ExtrAns system, as we briefly discussed in the
review of semantic knowledge-based open-domain and
non-biomedical-domain QA approaches, is a logic-based
restricted-domain QA system, originally developed for the
Unix manual domain. ExtrAns answers domain-specific ques-
tions by exploiting linguistic knowledge extracted from the
documents and terminological knowledge about the given

domain. In an offline phase, the system analyzes the
sentences in the documents, transform them into formal
semantic representations, i.e., MLFs (Minimal Logical Forms),
and store the MLFs in a KB. In an online phase, the system

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Fig. 14 – Rinaldi et al.’s biolog

rocesses the question using the same basic mechanism. The
LF of the question is proved by deduction over the MLFs

f document sentences in the KB. In case there is a direct
atch, the original sentence is presented as answer. Other-
ise, relaxation of the proof criteria is applied in a stepwise
anner.
The QA process in the ExtrAns system as described above

epends upon the tokenization and terminological prepro-
essing of documents and the question. The system relies on
domain-specific terminological KB, a WordNet-like hand-

rafted thesaurus, which assigns a synset (synonym set)
dentifier to each set of synonyms representing an identical
oncept. If a term in a question or document sentence belongs
o a synset in the terminological KB, the term is replaced by
he synset identifier in the LF. This effectively yields a canon-
cal form, whereby each term in the question can be matched
o all its synonyms. Rinaldi et al. note that this approach
mounts to an implicit terminological normalization for a
iven domain. In this regard, they also note that the impact
f domain-specificity in the ExtrAns system involves only the
onstruction of the thesaurus and the preprocessing of input
exts. They thus consider an advantage of ExtrAns’ MLFs as
onsisting in the fact that they can be produced with minimal
omain knowledge, thus making the approach easily portable
o different domains.

Rinaldi et al.’s QA system for the genomics domain has
he same basic architecture as the original ExtrAns system,
s shown in Fig. 14.

In adapting the ExtrAns system to the genomics domain,
inaldi et al. worked with two domain-specific document col-

ections: (1) GENIA corpus, and (2) ‘Biovista’ corpus consisting
f full-text journal articles, generated from MEDLINE using
wo seed term lists concerning genes and pathways.

The process of analyzing and processing the document
ets consisted of a series of steps, including preliminary
ocument zone detection, terminological processing, deep-
yntactic parsing, and derivation of MLFs.

Rinaldi at al. first used an XML-based filtering tool in order
o identify document zones that need to be processed in a
pecific manner.

For terminological processing, which is not needed for the
nnotated GENIA corpus, Rinaldi et al. first marked up the
erms in the Biovista corpus using additional XML tags. Next
hey chunked the entire corpus using the shallow syntactic

hunker LT Chunk [138]. They then expanded the corpus terms
o the boundary of the phrasal chunk in which they appear. In
etecting the relations between terms, Rinaldi et al. focused
heir attention on the relations of synonymy and hyponymy,
QA system architecture [55].

and gathered those relations in a thesaurus, using the Word-
Net synset as the organizing unit. Rinaldi et al. mention that
one of the most difficult problems that they have encountered
in working on restricted-domain QA concerns the syntactic
ambiguity generated by multi-word units, especially those
involving technical terms. The solution that they adopted was
to parse multi-word terms as single syntactic units.

In consideration of the advantages of parsing over shal-
low processing methods as well as the disadvantages of
probabilistic parsers compared to deep-linguistic, formal
grammar-based parsers, Rinaldi et al. adapt ExtrAns to use a
broad-coverage deep-syntactic parser, Pro3Gres [139], which is
comparable to a probabilistic parser in speed but is more deep-
linguistic than the latter. The deep-linguistic parser generates
functional dependency structures representing sentence-level
syntactic relations, which lend easily to predicate-argument
structure-based shallow semantic representations such as
MLFs.

The final stage of document processing concerns construc-
tion of MLFs. Rinaldi et al. note that the construction of MLFs
is simplified by the deep-linguistic dependency-based pars-
ing done in the previous stage, thanks to the relatively direct
mapping between labeled dependencies and surface semantic
representations.

Rinaldi et al. have not reported any formal evaluation of the
QA system adapted to the genomics domain.

4.3.3. Summary of biological QA
A brief summary of the biological (or biomedical) QA
approaches reviewed is presented in Table 10.

5. Future directions

In this section we briefly recapitulate the overall current
trends in biomedical QA research, and project directions for
the future research development in the area.

First, we discuss the matter from the point of view of the
three main phases of QA processing.

5.1. Question processing

In the case of medical QA, we have seen that the EBM paradigm
provides a useful framework for question analysis and classi-

fication, with PICO frame and Ely et al.’s taxonomy of clinical
questions serving as bases for question analysis and classi-
fication. However, we have also noted that current medical
QA approaches have limitations in terms of the types and for-
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Table 10 – Summary of biological QA approaches.

Approach (Category); task concerned; technique used

Yu and Lee [125,126] NLP techniques for identifying summary sentences for biological images.
BioEx interface for accessing biological images.

Takahashi et al. [128] Semantics-based.
Use of UMLS, lexicons, and thesauri for semantic and terminological information for QA.

Lin et al. [129] Semantics-based.
Use of semantic role labeling for extraction of predicate and arguments.
Use of semantic features for answer ranking.

Shi et al. [130] Semantics-based.
BioSquash system for QA-oriented summarization of biomedical documents.

Kontos et al. [135,136] Inference-based.
AROMA system for model-based biological QA.
NL grammar for capturing causal relations.
Text analysis of rhetoric relations involving causal knowledge.

Rinaldi et al. [55] Logic-based.
ExtrAns system adapted to genomics domain.

MLFs
proce
Construction of
Terminological

mats of questions that they can process. Yu et al.’s MedQA
system, for example, can only handle definitional questions.
Niu et al.’s EPoCare system operates on PICO-format queries.
Similarly, Demner-Fushman et al.’s clinical QA system accepts
structured queries in the PICO format, not NL questions. As the
ultimate goal of QA systems, including biomedical QA sys-
tems, is to be able to accept a variety of NL questions and
to generate appropriate NL answers, further research needs
to be done so as to enable more sophisticated analysis and
classification of medical questions as well as their conversion
into canonical forms. Jacquemart and Zweigenbaum’s seman-
tic modeling of medical questions and Terol et al.’s LF- and
NER-based analysis/classification of medical questions seem
to point to promising directions. In the case of biological QA,
research needs to be done also toward the development of
domain-specific typology and taxonomy of questions.

5.2. Document processing

The search engine used by a biomedical QA system for doc-
ument retrieval depends on whether the given system is
Web-based or corpus-based. We have seen that Jacquemart
and Zweigenbaum’s and Terol et al.’s systems, for example,
use Google to retrieve documents from the Web. Other sys-
tems, e.g., Weiming et al.’s, use standard IR engines, such as
Lucene, to retrieve documents from the text collection. Still
other systems, e.g., Demner-Fushman et al.’s, use biomedi-
cal domain-specific document query systems, e.g., PubMed,
to retrieve documents from the MEDLINE collection. Yu et
al.’s MedQA system uses both Google and Lucene to retrieve
documents from the Web and from MEDLINE. In this regard,
it seems worthwhile to consider Yu et al.’s suggestion for
a possible combination of a state-of-the-art search engine
with a biomedical domain-specific QA functionality. In addi-

tion, more research on the methods of utilizing semantic
knowledge, both domain-dependent and question-specific, in
the document retrieval process seems to be in order. The
phase of passage extraction, compared to that of document
.
ssing based on WordNet.

retrieval, can benefit even more from incorporation of seman-
tic knowledge. In this regard, we have seen that, in addition
to other strategies for extracting relevant sentences, such as
document zone detection, cue-phrase-based sentence cate-
gorization, and identification of lexico-syntactic patterns of
sentences that correspond to question types (e.g., Yu et al.),
semantic tagging and annotation of text (e.g., Delbecque et
al., Demner-Fushman et al.) has been used. Besides ques-
tion analysis/classification, passage extraction has a crucial
impact upon the quality of answers generated by a QA system.
As such, biomedical QA researchers need to continue to refine
techniques for exploiting semantic knowledge in extracting
passages for answer selection.

5.3. Answer processing

Most biomedical QA approaches that we have reviewed
rely on some form of semantic matching between ques-
tion and candidate answers, exploiting knowledge about the
concepts involved, their semantic types, and the relations
between those concepts and semantic types, mostly obtained
from UMLS resources, in ranking and selecting answers.
In addition to the utilization of semantic knowledge, we
have also seen several approaches (e.g. Yu et al., Niu et al.,
Demner-Fushman et al., Weiming et al.) that incorporate
(semantic) clustering-based text summarization techniques
in the answer processing phase. In this regard, we have also
reviewed a QA-oriented extractive summarization system (Shi
et al.) that generates multi-document summaries on the basis
of semantic role labeling, semantic graph construction, and
semantic clustering. It seems that incorporation of text sum-
marization in biomedical QA points to a promising direction,
given the need of generating synthesized answers to biomed-
ical questions that require clinical or experimental evidences

as answers. In this regard, research needs to be done as to
how to properly synthesize potentially conflicting evidences
in generating answers. More research is also in order as to the
appropriate format of answer presentation.

dx.doi.org/10.1016/j.cmpb.2009.10.003
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Next, we discuss the matter from the point of view of the
ramework of semantic knowledge-based QA.

.4. Utilization of semantics

ost biomedical QA approaches reviewed in this paper
ore or less utilize domain-specific semantic information

hroughout the question processing, document processing,
nd answer processing phases of the QA process, as expected,
iven the fact that a major characteristic of restricted-domain
A concerns utilization of domain-specific semantic knowl-
dge resources. Without repeating our discussion above, it
ay be said that continued research on the effective incor-

oration of semantic knowledge in the QA process is both
equired and envisioned.

.5. Use of logic and reasoning

erhaps the one aspect that has been least researched
n biomedical QA concerns the incorporation of logic and
easoning mechanisms. We have encountered only a few
pproaches that have been attempted in this regard. As
e have seen, Kontos et al. worked on analysis of textual

hetoric relations with a view to enabling causal infer-
nce, without using logic form transformation of texts. Terol
t al. and Rinaldi et al. worked on adapting logic-based
estricted-domain QA systems to the medical domain and the
enomics domain, respectively. Given the fact that answering
iomedical questions involves finding supporting or deny-

ng evidences, it seems fitting to explore the methods of
eriving indirect evidences, beyond directly and explicitly
tated answers, by utilizing inference mechanisms. Further-
ore, the fact that some of the terminological and ontological

esources available in the biomedical domain are structured
nd accessible in logic-based formalisms, suggests the rele-
ance and feasibility of exploring logic-based approaches to
iomedical QA.

To sum up, we envisage the following tasks ahead for
iomedical QA research:

. Construction of domain-specific typology and taxonomy of
questions (biological QA).

. Development of more sophisticated techniques for NL
question analysis and classification.

. Development of effective methods for answer generation
from potentially conflicting evidences.

. More extensive and integrated utilization of semantic
knowledge throughout the QA process.

. Incorporation of logic and reasoning mechanisms for
answer inference.

As our own way of contributing to the development in
he field as envisioned above, we have begun our work on

LOgic-based Question-Answering System for the Medical
omain (LOQAS-Med) [140,141], which uses Description Logic

142] as the formalism for knowledge representation and

easoning.

The proposed logic-based QA system aims to provide
nswers to medical questions based on explicitly stated facts
s well as to derive hypothesis-confirming or hypothesis-
b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 19

denying evidences by utilizing inference. As a first step toward
building the proposed system, we have devised our own
semantic categorization scheme to re-classify Ely et al.’s 10
most common generic clinical questions (see Table 5) and
some of their variations. Our categorization scheme clas-
sifies medical questions along four hierarchical levels of
classification: (1) semantic relations, (2) semantic classes,
(3) target specificity, and (4) context specificity. Based on
the scheme, we have semantically analyzed each question
category. More specifically, we have constructed question
and answer patterns as semantic triples in the form of
subject–predicate–object, based on the identification of the
semantic types and semantic relations in the UMLS Seman-
tic Network that correspond to the arguments and predicates
contained in each question type.

In contrast to Niu et al.’s and Demner-Fushman et al.’s
semantics-based medical QA approaches, which are mainly
based on the identification and extraction of PICO elements,
our approach aims at identification and extraction of specific
semantic types and relations that directly correspond to the
arguments and predicates. While Jacquemart, Zweigenbaum,
and Delbecque have also investigated semantic modeling of
medical questions in the form of concept–relation–concept
triples, our semantic analysis of medical question/answer pat-
terns is based on our own classification of medical questions
as described above. Finally, while Terol et al.’s logic-based
QA system is also intended to handle Ely et al.’s 10 most
common clinical questions, the Q–A pattern matching used
by their system is mainly based on the matching of the
number of medical entities of corresponding semantic types,
whereas the Q–A pattern-matching process in our proposed
system involves direct matching of the semantic types cor-
responding to the arguments and the semantic relations
corresponding to the arguments between question and can-
didate answers.

As we have already contributed to the field with our seman-
tic analysis, modeling, and classification of medical questions,
we believe that LOQAS-Med, with its extensive utilization of
semantic knowledge and with its incorporation of logic and
reasoning mechanisms for answer inference from potentially
conflicting evidences, will further contribute to moving the
field forward.

6. Conclusion

In this paper, we have reviewed the current state of the
art in biomedical QA research, with a focus on seman-
tic knowledge-based QA approaches. Corresponding to the
growth of biomedical information, there is a growing need of
QA systems that can help better utilize the ever-accumulating
information. While the biomedical domain poses particular
challenges for QA, with highly complex terminology, it also
provides QA researchers with a variety of domain-specific
semantic knowledge resources that can be exploited in the
development of more sophisticated techniques for processing
NL text, for utilizing semantic knowledge, and for incorporat-
ing logic and reasoning mechanisms, will lead to more useful
QA systems.
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[38] S.M. Harabagiu, M.A. Paşca, S.J. Maiorano, Experiments
with open-domain textual question answering, in:
Proceedings of the 16th Int’l Conf. Comp. Ling. (COLING
2000), Saarbrücken, Germany, 2000, pp. 292–298.

[39] D. Moldovan, B. Rus, Logic form transformations of
WordNet and its applicability to question answering, in:
Proceedings of the 39th Ann. Meeting Assoc. Comp. Ling.
(ACL 2001), ACL, Toulouse, France, 2001, pp. 402–409.

[40] D. Moldovan, C. Clark, S. Harabagiu, S. Maiorano, COGEX: a
logic prover for question answering, in: Proceedings of the
2003 Human Lang. Tech. and North Am. Chap. Assoc.
Comp. Ling. Joint Conf. (HLT-NAACL 2003), Edmonton,
Canada, 2003, pp. 87–93.

[41] D. Moldovan, C. Clark, S. Harabagiu, D. Hodges, COGEX: a
semantically and contextually enriched logic prover for
question answering, J Appl. Logic 5 (2007) 49–69.

[42] D. Mollá, R. Schwitter, M. Hess, R. Fournier, ExtrAns, an
answer extraction system, TAL 41 (2000) 495–522.

[43] D. Mollá, Towards semantic-based overlap measures for
question answering, in: Proceedings of the First
Australasian Language Technology Workshop (ALTW‘03),
2003.

[44] F. Benamara, Cooperative question answering in restricted
domains: the WEBCOOP experiment, in: Proceedings of the
ACL-2004 Workshop Question Answering in Restricted
Domains, ACL, Barcelona, Spain, 2004, pp. 31–38.

[45] R.J. Waldinger, D.E. Appelt, J.L. Dungan, J. Fry, J.R. Hobbs, D.J.
Israel, P. Jarvis, D. Martin, S. Riehemann, M.E. Stickel, M.
Tyson, Deductive question answering from multiple
resources, in: M.T. Maybury (Ed.), New Directions in
Question Answering, AAAI Press, 2004, pp. 253–
262.

[46] M.E. Stickel, R.J. Waldinger, V.K. Chaudhri, A guide to
SNARK, Technical Report, SRI International, Menlo Park,
CA, 2000.

[47] J. Curtis, G. Matthews, D. Baxter, On the effective use of Cyc
in a question answering system, in: Proceedings of the
IJCAI’05 Workshop Knowledge and Reasoning for
Answering Questions (KRAQ’05), Edinburgh, UK, 2005, pp.
61–70.

[48] Cyc, http://www.cyc.com/.
[49] C. Clark, D. Hodges, J. Stephan, D. Moldovan, Moving QA

towards reading comprehension using context and default
reasoning, in: Proceedings of the AAAI 2005 Workshop
Inference for Textual Question Answering, AAAI Press,
Pittsburgh, PA, USA, 2005, pp. 6–12.

[50] L. Tari, C. Baral, Using AnsProlog with Link Grammar and
WordNet for QA with deep reasoning, in: Proceedings of the
AAAI 2005 Workshop Inference for Textual Question
Answering, AAAI Press, Pittsburgh, PA, USA, 2005, pp. 13–21.

[51] D.D. Sleator, D. Temperley, Parsing English with Link
Grammar, in: Proceedings of the Third Int’l Workshop on
Parsing Technologies, 1993.

[52] C. Baral, G. Gelfond, M. Gelfond, R.B. Scherl, Textual

inference by combining Multiple Logic Programming
paradigms, in: Proceedings of the AAAI 2005 Workshop
Inference for Textual Question Answering, AAAI Press,
Pittsburgh, PA, USA, 2005, pp. 1–5.
b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 21

[53] D. Bobrow, D. Condoravdi, R. Crouch, R. Kaplan, L.
Karttunen, T. King, V. dePaiva, A. Zaenen, A basic logic for
textual Davidsonian inference, in: Proceedings of the AAAI
2005 Workshop Inference for Textual Question Answering,
AAAI Press, 2005, pp. 47–51.

[54] H. Yu, C. Sable, Being Erlang Shen: identifying answerable
questions, in: Proceedings of the IJCAI’05 Workshop
Knowledge and Reasoning for Answering Questions
(KRAQ’05), Edinburgh, UK, 2005, pp. 6–14.

[55] F. Rinaldi, J. Dowdall, G. Schneider, A. Persidis, Answering
questions in the genomics domain, in: Proceedings of the
ACL-2004 Workshop Question Answering in Restricted
Domains, ACL, Barcelona, Spain, 2005.

[56] P. Zweigenbaum, Question answering in biomedicine, in:
Proceedings of the EACL 2003 Workshop Natural Language
Processing for Question Answering, 2003, pp. 1–4.

[57] Y. Niu, G. Hirst, Analysis of semantic classes in medical
text for question answering, in: Proceedings of the
ACL-2004 Workshop Question Answering in Restricted
Domains, ACL, Barcelona, Spain, 2004.

[58] P. Zweigenbaum, Knowledge and reasoning for medical
question-answering, in: Proceedings of the ACL-IJCNLP
2009 Workshop on Knowledge and Reasoning for
Answering Questions, ACL and AFNLP, Suntec, Singapore,
2009, pp. 1–2.

[59] J.D. Kim, T. Ohta, Y. Tateisi, J. Tsujii, GENIA Corpus—a
semantically annotated corpus for bio-textmining,
Bioinformatics 19 (2003) i180–i182.

[60] A.L. Rector, S. Bechhover, C.A. Goble, I. Horrocks, W.A.
Nolan, W.D. Solomon, The GRAIL concept modelling
language for medical terminology, Art. Intell. Med. 9 (1997)
139–171.

[61] A. Aronson, Effective mapping of biomedical text to the
UMLS Metathesaurus: The MetaMap Program, in:
Proceedings of the AMIA 2001 Symposium, 2001, pp. 17–21.

[62] T.C. Rindflesch, M. Fiszman, The interaction of domain
knowledge and linguistic structure in natural language
processing: interpreting hypernymic propositions in
biomedical text, J. Biomed. Inform. 36 (2003) 462–477.

[63] J.W. Ely, J.A. Osheroff, M.H. Ebell, G.R. Bergus, B.T. Levy, M.L.
Chamliss, E.R. Evans, Analysis of questions asked by family
doctors regarding patient care, Br. Med. J. 319 (1999)
358–361.

[64] J.W. Ely, J.A. Osheroff, K.J. Ferguson, M.L. Chambliss, D.C.
Vinson, J.L. Moore, Lifelong self-directed learning using a
computer database of clinical questions, J. Fam. Pract. 45
(1997) 382–388.

[65] D.M. D’Alessandro, C.D. Kreiter, M.W. Peterson, An
evaluation of information-seeking behaviors of general
pediatricians, Pediatrics 113 (2004) 64–69.

[66] D.L. Sackett, W.M.C. Rosenberg, J.A.M. Gray, R.B. Haynes,
W.S. Richardson, Evidence-based medicine: what it is and
what it isnt, Br. Med. J. 312 (1996) 71–72.

[67] D.L. Sackett, S. Strauss, W. Richardson, W. Rosenberg, R.
Haynes, Evidence-Based Medicine: How to Practice and
Teach EBM, 2nd ed., Churchill Livingstone, Edinburgh, UK;
New York, USA, 2000.

[68] B. Alper, J. Stevermer, D. White, B. Ewigman, Answering
family physicians’ clinical questions using electronic
medical databases, J. Fam. Pract. 50 (2001) 960–
965.

[69] B.S. Alper, D.S. White, B. Ge, Physicians answer more
clinical questions and change clinical decisions more often
with synthesized evidence: a randomized trial in primary

care, Ann. Fam. Med. 3 (2005) 507–513.

[70] L. Berkowitz, Review and evaluation of clinical reference
tools for physicians, White Paper, 2002, http://www.
uptodate.com/whitepaper/UTD WP Internet Tools.pdf.

dx.doi.org/10.1016/j.cmpb.2009.10.003
http://www.cyc.com/
http://www.uptodate.com/whitepaper/UTD_WP_Internet_Tools.pdf
http://www.uptodate.com/whitepaper/UTD_WP_Internet_Tools.pdf


m s
22 c o m p u t e r m e t h o d s a n d p r o g r a

[71] J.J. Cimino, J. Li, M. Graham, L.M. Currie, M. Allen, S.
Bakken, V.L. Patel, Use of online resources while using a
clinical information system, in: Proceedings of the AMIA
2003 Symposium, AMIA, 2003, pp. 175–179.

[72] W.R. Hersh, M.K. Crabtree, D.H. Hickman, L. Sacherek, C.P.
Friedman, P. Tidmarsh, C. Mosbaek, D. Kraemer, Factors
associated with success in searching MEDLINE and
applying evidence to answer clinical questions, J. Am. Med.
Inform. Assoc. 9 (2002) 283–293.

[73] P. Jacquemart, P. Zweigenbaum, Towards a medical
question-answering system: a feasibility study, Stud.
Health. Technol. Inform. 95 (2003) 463–468.

[74] T.Y. Koonce, N.B. Giuse, P. Todd, Evidence-based databases
versus primary medical literature: an in-house
investigation on their optimal use, J. Med. Libr. Assoc. 92
(2004) 407–411.

[75] F. Magrabi, J.I. Westbrook, E.W. Coiera, A.S. Gosling,
Clinicians’ assessments of the usefulness of online
evidence to answer clinical questions, in: M. Fieschi, et al.
(Eds.), MEDINFO 2004., IOS Press, Amsterdam, 2004, pp.
297–300.

[76] M.R. Patel, C.M. Schardt, L.L. Sanders, S.A. Keitz,
Randomized trial for answers to clinical questions:
evaluating a pre-appraised versus a MEDLINE search
protocol, J. Med. Libr. Assoc. 94 (2006) 382–386.

[77] J.I. Westbrook, A.S. Gosing, E. Coiera, Do clinicians use
online evidence to support patient care? A study of 55,000
clinicians, J. Am. Med. Inform. Assoc. 11 (2004) 113–120.

[78] J.I. Westbrook, E.W. Coiera, A.S. Gosling, Do online
information retrieval systems help experienced clinicians
answer clinical questions? J. Am. Med. Inform. Assoc. 12
(2005) 315–321.

[79] J.W. Ely, J.A. Osheroff, M.H. Ebell, M.L. Chambliss, D.C.
Vinson, J.J. Stevermer, E.A. Pifer, Obstacles to answering
Doctors’ questions about patient care with evidence:
qualitative study, Br. Med. J. 324 (2002) 710–716.

[80] J.W. Ely, J.A. Osheroff, M.L. Chambliss, M.H. Ebell, M.E.
Rosenbaum, Answering physicians’ clinical questions:
obstacles and potential solutions, J. Am. Med. Inform.
Assoc. 12 (2005) 217–224.

[81] E.C. Armstrong, The well-built clinical question: the key to
finding the best evidence efficiently, W. Med. J. 98 (1999)
25–28.

[82] W.S. Richardson, M.C. Wilson, J. Nishikawa, R.S. Hayward,
The well-built clinical question: a key to evidence-based
decisions, ACP J. Club 123 (1995) A12–13.

[83] C. Schardt, M.B. Adams, T. Owens, S. Keitz, P. Fontelo,
Utilization of the PICO framework to improve searching
PubMed for clinical questions, BMC Med. Inform. Decis.
Mak. 7 (16) (2007).

[84] G.R. Bergus, C.S. Randall, S.D. Sinift, D.M. Rosenthal, Does
the structure of clinical questions affect the outcome of
curbside consultations with specialty colleagues? Arch.
Fam. Med. 9 (2000) 541–547.

[85] D. Demner-Fushman, S.E. Hauser, S.M. Humphrey, G.M.
Ford, J.L. Jacobs, G.R. Thoma, MEDLINE as a source of
just-in-time answers to clinical questions, in: Proceedings
of the AMIA 2006 Symposium, AMIA, 2006, pp. 190–194.

[86] J.W. Ely, J.A. Osheroff, P.N. Gorman, M.H. Ebell, M.L.
Chambliss, E.A. Pifer, P.Z. Stavri, A taxonomy of generic
clinical questions: classification study, Br. Med. J. 321 (2000)
429–432.

[87] X. Huang, J. Lin, D. Demner-Fushman, Evaluation of PICO as
a knowledge representation for clinical questions, in:

Proceedings of the AMIA 2006 Symposium, AMIA, 2006, pp.
359–363.

[88] H. Yu, C. Sable, H.R. Zhu, Classifying Medical Questions
based on an Evidence Taxonomy, in: Proceedings of the
i n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24

AAAI-05 Workshop Question Answering in Restricted
Domains, AAAI, Pittsburgh, PA, USA, 2005.

[89] H. Yu, Y. Cao, Automatically extracting information needs
from ad hoc clinical questions, in: Proceedings of the AMIA
2008 Symposium, 2008, pp. 96–100.

[90] T. Kobayashi, C.-R. Shyu, Representing clinical questions by
semantic type for better classification, in: Proceedings of
the AMIA 2006 Symposium, AMIA, 2006, p. 987.

[91] L.A. Slaughter, D. Soergel, T.C. Rindflesch, Semantic
representation of consumer questions and physician
answers, Int. J. Med. Inform. 75 (2006) 513–529.

[92] Y.-G. Cao, J. Ely, L. Antieau, H. Yu, Evaluation of the clinical
question answering presentation, in: Proceedings of the
Workshop on BioNLP, ACL, Boulder, Colorado, 2009, pp.
171–178.

[93] M. Lee, J. Cimino, H.R. Zhu, C. Sable, V. Shanker, J. Ely, H. Yu,
Beyond information retrieval—medical question
answering, in: Proceedings of the AMIA 2006 Symposium,
AMIA, 2006, pp. 469–473.

[94] H. Yu, M. Lee, D. Kaufman, J. Ely, J.A. Osheroff, G. Hripscak,
J. Cimino, Development, implementation, and a cognitive
evaluation of a definitional question answering system for
physicians, J. Biomed. Inform. 40 (2007) 236–261.

[95] E.T.K. Sang, G. Bouma, M. de Rijke, Developing offline
strategies for answering medical questions, in: Proceedings
of the AAAI-05 Workshop Question Answering in
Restricted Domains, AAAI, Pittsburgh, PA, USA, 2005.

[96] J. Lin, D. Karakos, D. Demner-Fushman, S. Khudanpur,
Generative content models for structural analysis of
medical abstracts, in: Proceedings of the HLT-NAACL 2006
Workshop on Linking Natural Language Processing and
Biology: Towards Deeper Biological Literature Analysis
(BioNLP’06), 2006, pp. 65–72.

[97] L. McKnight, P. Srinivasan, Categorization of sentence types
in medical abstracts, in: Proceedings of the AMIA 2003
Symposium, 2003, pp. 440–444.

[98] M. Light, X.Y. Qiu, P. Srinivasan, The language of bioscience:
facts, speculations, and statements in between, in:
Proceedings of the HLT-NAACL 2004 Workshop on Linking
Biological Literature, Ontologies and Databases (BioLink
2004), 2004, pp. 17–24.

[99] M. Lee, W. Wang, H. Yu, Exploring supervised and
unsupervised approaches to detect topics in biomedical
text, BMC Bioinform. 7 (2006) 140.

[100] D. Radev, H. Jing, M. Budzikowska, Centroid-based
summarization of multiple documents: sentence extraction
utility-based evaluation, and user studies, in: Proceedings
of the ANLP/NAACL Workshop on Summarization,
2000.

[101] H. Yu, Y. Wei, The semantics of a definiendum constrains
both the lexical semantics and the lexicosyntactic patterns
in the definiens, in: Proceedings of the HLT-NAACL 2006
Workshop on Linking Natural Language Processing and
Biology: Towards Deeper Biological Literature Analysis
(BioNLP’06), 2006.

[102] H. Yu, D. Kaufman, A cognitive evaluation of four online
search engines for answering definitional questions posed
by physicians, Pac. Symp. Biocomput. 12 (2007) 328–
339.

[103] T. Delbecque, P. Jacquemart, P. Zweigenbaum, Indexing
UMLS semantic types for medical question-answering, in:
R. Engelbrecht (Ed.), Connecting Medical Informatics and
Bio-Informatics (ENMI 2005), 2005, pp. 805–810.

[104] Y. Niu, G. Hirst, G. McArthur, P. Rodriguez-Gianolli,

Answering clinical questions with role identification, in:
Proceedings of the ACL-2003 Workshop Natural Language
Processing in Biomedicine, ACL, Sapporo, Japan, 2003, pp.
73–80.

dx.doi.org/10.1016/j.cmpb.2009.10.003


s i n
c o m p u t e r m e t h o d s a n d p r o g r a m

[105] Y. Niu, X. Zhu, J. Li, G. Hirst, Analysis of polarity
information in medical text, in: Proceedings of the AMIA
2005 Symposium, AMIA, 2005, pp. 570–574.

[106] Y. Niu, X. Zhu, G. Hirst, Using outcome polarity in sentence
extraction for medical question-answering, in: Proceedings
of the AMIA 2006 Symposium, AMIA, 2006, pp. 599–603.

[107] D. Demner-Fushman, J. Lin, Knowledge extraction for
clinical question answering: preliminary results, in:
Proceedings of the AAAI-05 Workshop Question Answering
in Restricted Domains, AAAI Press, Pittsburgh, PA, USA,
2005.

[108] D. Demner-Fushman, B. Few, S.E. Hauser, G. Thoma,
Automatically identifying health outcome information in
MEDLINE records, J. Am. Med. Inform. Assoc. 13 (2006)
52–60.

[109] D. Demner-Fushman, J. Lin, Answer extraction semantic
clustering, and extractive summarization for clinical
question answering, in: Proceedings of the 21st Int’l Conf.
Comp. Ling. and 44th Ann. Meeting Assoc. Comp. Ling.
(COLING-ACL 2006), Sydney, Australia, 2006, pp. 841–848.

[110] D. Demner-Fushman, J. Lin, Answering clinical questions
with knowledge-based and statistical techniques, Comput.
Linguist. 33 (2007)
63–103.

[111] J. Lin, D. Demner-Fushman, The role of knowledge in
conceptual retrieval: a study in the domain of clinical
medicine, in: Proceedings of the 29th Ann. Int’l ACM SIGIR
Conf. (SIGIR’06), ACM, Seattle, WA, USA, 2006, pp. 99–
106.

[112] W. Weiming, D. Hu, M. Feng, L. Wenyin, Automatic clinical
question answering based on UMLS relations, in: 3rd Int’l
Conf. Semantics, Knowledge and Grid (SKG 2007), accepted
Xi’An, China, 2007.

[113] S. Barton, Clinical Evidence, BMJ Publishing Group, London,
2002.

[114] C.M. Ball, R.S. Phillips, Evidence-based on Call: Acute
Medicine, Churchill Livingstone, Edinburgh, UK, 2001.

[115] D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, P.
Rodriguez-Gianolli, ToX—The Toronto XML Engine, in:
Proceedings of the Int’l Workshop on Information
Integration on the Web, 2001.

[116] J. Carbonell, J. Goldstein, The use of MMR diversity based
reranking for reordering documents and producing
summaries, in: Proceedings of the 21st Ann. Int. ACM SIGIR
Conf. on Research and Development in Information
Retrieval, 1998, pp. 335–336.

[117] C.Y. Lin, ROUGE: a package for automatic evaluation of
summaries, in: Proceedings of the ACL-2004 Workshop on
Text Summarization Branches Out, 2004, pp. 74–81.

[118] M.H. Ebell, B.D. Weiss, S.H. Woolf, J. Susman, B. Ewigman,
M. Bowman, Strength of recommendation taxonomy
(SORT): a patient-centered approach to grading evidence in
the medical literature, J. Am. Brd. Fam. Pract. 17 (2004)
59–67.

[119] A.T. McCray, A. Burgun, O. Bodenreider, Aggregating UMLS
semantic types for reducing conceptual complexity, in:
Proceedings of the 10th World Congress Med. Inform.
(MEDINFO 2001), 2001, pp. 216–220.

[120] J. Fam. Pract., http://www.jfponline.com/.
[121] Parkhurst Exchange, http://www.parkhurstexchange.com/.
[122] Y. Zhao, G. Karypis, Evaluation of hierarchical clustering

algorithms for document datasets, in: Proceedings of the
11th Int’l ACM Conf. on Information and Knowledge
Management (CIKM’02), 2002.
[123] R.M. Terol, P. Martínez-Barco, M. Palomar, A knowledge
based method for the medical question answering
problem, Comput. Biol. Med. 27 (2007) 1511–
1521.
b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24 23

[124] D. Lin, Dependency-based evaluation of MINIPAR, in:
Proceedings of the Workshop on Evaluation of Parsing
Systems, 1998.

[125] H. Yu, M. Lee, Accessing bioscience images from abstract
sentences, Bioinformatics 22 (2006) e547–e556.

[126] H. Yu, Towards answering biological questions with
experimental evidence: automatically identifying text that
summarize image content in full-text articles, in:
Proceedings of the AMIA 2006 Symposium, AMIA, 2006, pp.
834–838.

[127] SummaryPlus, http://www.info.sciencedirect.com/using/
display/summaryplus/.

[128] K. Takahashi, A. Koike, T. Takagi, Question answering
system in biomedical domain, Proceedings of the Genome
Informatics 2004 (GIW 2004) (2004) 161–162.

[129] R.T.K. Lin, J.L.-T. Chiu, H.-J. Dai, M.-Y. Day, R.T.-H. Tsai, W.L.
Hsu, Biological question answering with syntactic and
semantic feature matching and an improved mean
reciprocal ranking measurement, in: Proceedings of the
2008 IEEE International Conference on Information Reuse
and Integration (IEEE IRI 2008), Las Vegas, NV, USA, 2008,
pp. 184–189.

[130] Z. Shi, G. Melli, Y. Wang, Y. Liu, B. Gu, M. Kashani, A. Sarkar,
F. Popowich, Question answering summarization of
multiple biomedical documents, in: Proceedings of the 20th
Canadian Conference on Artificial Intelligence (CanAI’07),
2007.

[131] A. Koike, T. Takagi, Gene/protein/family name recognition
in biomedical literature, in: Proceeding of the HLT-NAACL
2004 Workshop on Linking Biological Literature, Ontologies
and Databases: Tools for Users (BioLink 2004), 2004, pp.
9–16.

[132] B. Boguraev, T. Briscoe, J. Carroll, D. Carter, C. Grover, The
derivation of a grammatically indexed lexicon from the
Longman dictionary of contemporary English, in:
Proceedings of the 25th Conf. Assoc. Comp. Ling. (ACL
1987), 1987, pp. 193–200.

[133] Y. Tsuruoka, Bidirectional inference with the easiest-first
strategy for tagging sequence data, in: Proceeding of the
Conference on Human Language Technology and Empirical
Methods in Natural Language Processing (HLT-EMNLP
2005), 2005, pp. 467–474.

[134] G. Melli, Y. Wang, Y. Liu, M. Kashani, Z. Shi, B. Gu, A. Sarkar,
F. Popowich, Description of Squash, the SFU question
answering summary handler for the DUC-2005
summarization task, in: Proceedings of the 5th Document
Understanding Conference (DUC 2005), 2005, pp. 103–110.

[135] J. Kontos, J. Lekakis, I. Malagardi, J. Peros, Grammars for
question answering systems based on intelligent text
mining in biomedicine, in: Proceedings of the 7th Hellenic
European Conf. Computer Mathematics and Its
Applications (HERCMA 2005), Athens, Greece, 2005.

[136] J. Kontos, I. Malagardi, J. Peros, Question answering and
rhetoric analysis of biomedical texts in the AROMA system,
in: Proceedings of the 7th Hellenic European Conf.
Computer Mathematics and Its Applications (HERCMA
2005), Athens, Greece, 2005.

[137] J. Kontos, ARISTA: knowledge engineering with scientific
texts, Inform. Softw. Technol. 34 (1992) 611–616.

[138] S. Finch, A. Mikheev, A workbench for finding structures in
texts, in: Proceedings of the Fifth Conference on Applied
Natural Language Processing, 1997.

[139] G. Schneider, Extracting and using trace-free functional
dependencies from the Penn Treebank to reduce parsing

complexity, in: Proceedings of the 2nd Workshop Treebanks
and Linguistic Theories (TLT 2003), 2003, pp. 14–15.

[140] S.J. Athenikos, H. Han, A.D. Brooks, Semantic analysis and
classification of medical questions for a logic-based

dx.doi.org/10.1016/j.cmpb.2009.10.003
http://www.jfponline.com/
http://www.parkhurstexchange.com/
http://www.info.sciencedirect.com/using/display/summaryplus/


m s
24 c o m p u t e r m e t h o d s a n d p r o g r a

medical question-answering system, in: Proceedings of the
International Workshop on Biomedical and Health

Informatics (BHI 2008) in conjunction with 2008 IEEE
Conference on Bioinformatics and Biomedicine (IEEE BIBM
2008), Philadelphia, PA, USA, 2008, pp. 111–112.

[141] S.J. Athenikos, H. Han, A.D. Brooks, A framework of
logic-based question-answering system for the medical
i n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 1–24

domain (LOQAS-Med), in: Proceedings of the 24th Annual
ACM Symposium on Applied Computing (ACM SAC’09),

Honolulu, Hawaii, USA, 2009, pp. 847–851.

[142] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F.
Patel-Schneider, The Description Logic Handbook: Theory,
Implementation and Applications, Cambridge University
Press, West Nyack, NY, 2003.

dx.doi.org/10.1016/j.cmpb.2009.10.003

	Biomedical question answering: A survey
	Introduction
	Generic architecture of QA systems
	Semantic knowledge-based QA
	Semantics-based QA
	Inference-based QA
	Logic-based QA

	State of the art in biomedical QA
	Biomedical QA: background
	Open-domain QA vs. restricted-domain QA
	Characteristics of biomedical QA
	Resources for biomedical QA

	Medical QA
	Introduction to medical QA
	Medical QA systems and approaches
	Preliminary approaches to medical QA
	Non-semantic-knowledge-based medical QA systems and approaches
	Semantics-based medical QA systems and approaches
	Logic-based medical QA systems and approaches

	Summary of medical QA

	Biological QA
	Introduction to biological QA
	Biological QA systems and approaches
	Preliminary approaches to biological QA
	Semantics-based biological QA systems and approaches
	Inference-based biological QA systems and approaches
	Logic-based biological QA systems and approaches

	Summary of biological QA


	Future directions
	Question processing
	Document processing
	Answer processing
	Utilization of semantics
	Use of logic and reasoning

	Conclusion
	Conflict of interest statement
	Acknowledgement
	References


